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M- 32.S

PREFACE.

I HAVE endeavoured in the present work to exhibit a

comprehensive view of the Differential Calculus on the

method of Limits. In the more elementary portions I have

entered into considerable detail in the explanations with the

hope that a reader who is without the assistance of a tutor

may be enabled to acquire a competent acquaintance with

the subject. To the different Chapters will be found ap-

pended Examples sufficiently numerous to render another

book unnecessary. These examples have been selected

almost exclusively from the College and University Ex-

amination Papers ; the greater part of them will be found

to present no very serious difficulty to the student, although

a few may require peculiar analytical skill.

I have frequently given more than one investigation of

a theorem, because I believe that the student derives ad-

vantage from viewing the same proposition under different

aspects, and that, in order to succeed in the examinations

which he may have to undergo, he should be prepared for

a considerable variety in the order of arranging the several

branches of the subject, and for a corresponding variety in

the mode of demonstration.

In the composition of the first edition ot this work, while
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trusting mainly to independent knowledge and judgment, I

derived assistance from the labours of well known authors on

the subject, especially Cournot, De Morgan, Moigno, Navier,

and Sehlomilch. In the subsequent editions a considerable

amount of fresh matter has been introduced, and this rests

almost exclusively on my own authority ; increased experience

as a teacher naturally gave stronger confidence to the writer.

Thus the work now contains on the whole much that is

original in substance, and much that is new in form.

The present edition has been carefully revised and some-

what enlarged. I have examined with attention and interest

treatises on the Differential Calculus recently published by

eminent mathematicians, in order to discover if the methods

of explaining and developing the principles of the subject

had gained any real improvement during the last twenty

years. I have not however found reason for concluding that

I could with advantage make any essential change in this

elementary work.

I have much reason to be grateful for the approbation

bestowed by teachers and students on this volume, the

first of a long series relating to various branches of mathe-

matics. My thanks are especially due to Professor Battaglini

of Naples for the honour which he has conferred on me by

translating my treatises on the Differential and the Integral

Calculus into Italian.

I. TODHTJNTER.
St John's College,

April, 1 87 1.

Since the foregoing Preface to the fifth edition was

printed the work has obtained increased favour both at home

and abroad, and translations of it have appeared in Russia

and in India. An elementary treatise on Laplace's Functions,

Lamp's Functions, and Bessel's Functions, designed as a sequel

to the volumes on the Differential and Integral Calculus, has

since been published.

January, 1878.
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DIFFERENTIAL CALCULUS.

CHAPTER I.

DEFINITIONS. LIMIT. INFINITE.

1. Suppose two quantities which are susceptible of

change so connected that if we alter one of them there is

a consequent alteration in the other, this second quantity
is called afunction of the first. Thus if a; be a symbol to

which we can assign different numerical values, such ex-

pressions as x*, 3*, log x, and sin x, are all functions of x.

If a function of x is supposed equal to another quantity,

as for example sin x=y, then both quantities are called

variables, one of them being the independent variable aDd
the other the dependent variable. An independent vari-

able is a quantity to which we may suppose any value

arbitrarily assigned ; a dependent variable is a quantity the

value of which is determined as soon as that of some in-

dependent variable is known. Frequently when we are

considering two or more variables it is in our power to fix

upon whichever we please as the independent variable, but

having once made our choice we must admit no change

in this respect throughout our operations ; at least such

a chance would require certain precautions and transfor-

mations.

2. We generally denote functions by such symbols as

F (x),f (x), <£ (x), yjr (x), and the like, the variable being

denoted by x. Such an equation as y=j> (x) implies that

the dependent variable y is so connected with the independent

variable x, that the value of y becomes known as soon as

that of x is given, and that if any change be made in the

numerical value assigned to x, the consequent change in y
can be found.

T. D. c. B
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3. The student has probably already had occasion to

consider the meaning of the terms "variable quantity" and
" function" which we have here introduced. In treatises on

the conic sections, for example, the equation ,y=2 sfax occurs,

where a; is a general symbol to which different numerical
values may be assigned, and a is a symbol to which we
suppose some invariable numerical value assigned, and which
is therefore called a " constant." For every value given to x
we can deduce the corresponding numerical value of y. In

the equation y=2 'Jax, since the value of y depends upon
that of a as well as that of x, we may say that y is a function

of a and x. Hence such symbols may be used as F(a, x)

to denote a function of both a and x ; and such an equation

as y=<j> (x, z, i) indicates that y is a function of the three

quantities denoted by the symbols x, z, and t.

4. In the equation y=2 Vax, if we know that a is to be
a constant quantity throughout any investigation on which
we may be engaged, we shall frequently not require to be
reminded of this constant, and shall continue to speak of y

as a function of x. So the equation y= -
>J (a

2—

x

2
) may be

represented by y=4> (x), where we express only that sym-
bol x which throughout our investigations will be considered
variable.

5. If the equation connecting the variables x and y be
such that y alone occurs on one side, and on the other side

some expression involving x and not y, we say that y is

an explicit function of x. When an equation connecting x
and y is not of this form, we say that y is an implicit function

of a;. Thus if y=ax*+bx+c, we have y an explicit function

of x. If ay*—'2bxy+cxi+g=0 we have y an implicit func-

tion of x. The words implicit function assume that y really

is a function of x in the sense in which we have used the

word function. This assumption may be seen to be true in

the example given, for we can by the solution of a quadratic

equation exhibit y as a function of x ; or rather we can infei

that y must be one of two explicit functions of x, namely

either
ftaH-VK&'-ac) x'-ag} ^ bx-J{{V-ac) x^-ag}

^ ^
a a

shall return to this point hereafter, in Art. 58.
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6. Explicit functions may be divided into algebraical and
transcendental. The former are those in which the only

operations indicated are addition, subtraction, multiplication,

division, and the raising of a quantity to a known power
or the extraction of a known root ; the latter are those which
involve other operations, as exponential functions, logarithmic

functions, and trigonometrical functions. We suppose here

that the number of the operations indicated is finite ; for as

we shall see hereafter a transcendental function may be equi-

valent to an infinite series of algebraical functions.

To the independent variable in an equation we may
suppose any value assigned, either positive or negative, as

great as we please or as small as we please. If we suppose

a series of different values assigned to x, beginning with

some negative yalue numerically very large and gradually

increasing algebraically up to some large positive value,

the series of values we obtain for y may present to us very

different results. For example, if y = x3
, then the values

of y will form a series beginning with a negative value

numerically large, and increasing algebraically up to a large

positive value. If y — x", the values of y are always positive,

and form a series first decreasing and then again increasing.

If y — ^(a* — x"), then the values of y are unreal for every

value of x not contained between — a and + a.

7. We proceed to another example more important for

our purpose. Suppose y = ? and consider the series of

values which y assumes when to x are assigned different

positive values. When x= 0, y = 0, and when x has any

positive value, y is a positive proper fraction. If we

put y in the form 1 — , we see that as x increases

so does y, but y being a proper fraction can never be so

great as unity. The difference of y from unity is —^

;

this fraction diminishes as x increases, and can be made

smaller than any assigned fraction, however
_
small, by

giving a sufficiently great value to x. Thus if we wish

y to differ from unity by a quantity less than
Jq^qq.

B2
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make a; =100,000, and the required result is obtained. If

we wish y to differ from unity by a quantity less than

, make x = 1,000,000, and the required result is

1,000,000'
H

obtained. Under these circumstances, we say "the limit of

y when x increases indefinitely is unity."

8. The importance of the notion of a limit cannot be
over-estimated ; in fact the whole of the Differential Calculus

consists in tracing the consequences which follow from that

notion. The student has probably already fallen upon cases

in which the word limit has been used, to which it will be
useful to recur. For example, the sum of the geometrical pro-

gression 1 + ^ + 1+^+ ... continued to n terms is 2 ——,

,

and hence he has deduced the result that the limit of the
series when the number of terms is indefinitely increased

is 2.

circular measure of an angle, the fraction —^— will, if be

9. A very important example of a limit occurs in works
on Trigonometry. It is there shewn that if denote the

sin

diminished indefinitely, approach as near as we please to

unity. In other words the limit of —g- , as continually

diminishes, is unity. We shall express this by saying " the

limit of - , when = 0, is unity
;

" that is, we use the

words "when = 0" as an abbreviation for "when is

continually diminished towards zero," or for " when is

diminished without limit."

10. The proposition "the limit of—^- , when 0=0, is unity"

is sometimes expressed thus, "
'

= 1, wheD 0=0," or
v

" sin = 0, when 8 = 0." It must however he most carefully
remembered that such expressions are only abbreviations and
cannot be understood absolutely. In like manner the result
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obtained in Art. 7, namely that the limit of —— when a?
1 +x

increases indefinitely is unity, would be sometimes expressed

thus, "when x is infinite equals unity." Here both

parts of the sentence are abbreviations: ''when x is infinite"

can only be considered as meaning " when x is increased

without limit,'
7

and "- equals unity" means strictly "—

—

JL ~T" •** X ~j~ *C

can be made to differ from unity by as small a quantity
as we please."

11. In the example y = let us now ascribe to x

negative values. Put — z for x ; thus y = . Now sup-

pose z to change gradually from to 1 ; the numerator of
;/

is positive and continually increasing, while the denominator
is negative and numerically continually diminishing. The
value of y then is negative and numerically continually in-

creases, and by taking z sufficiently near to unity we may
make y as great as we please ; that is, as z approaches unity

y has no finite limit. For the sake of shortness, this is some-
times expressed thus, " y is infinite, when z = 1;" but it must
not be forgotten that this last phrase is an abbreviation, and
must be considered to mean :

" by taking z sufficiently near

to unity y can be made to exceed any assigned magnitude,

however great." We shall not proceed further with the ex-

ample ; the reader will see that when z is greater than unity

y is positive, that y continually diminishes as z increases, and
approaches the limit unity when a increases indefinitely.

12. The student has already seen an example of the same
kind as that brought forward in the last Article, for he has

probably been accustomed to say, " the tangent of an angle

of 90° is infinity." On reflexion he will see that the only

way in which a meaning can be given to this statement is

to consider it an abbreviation of the following :
" as we

increase an angle gradually up to 90", the tangent of the

angle increases, and by taking the angle near enough to 90°

we may make the tangent as great as we please." We can
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form no distinct conception of an infinite magnitude, and the

word can only be used in Mathematics as an abbreviation

in the manner of the examples here given.

If to x the independent variable be ascribed values begin-

ning with zero and increasing without limit, this is sometimes

expressed for abbreviation by saying that x increases from

zero to infinity.

13. The meaning of the word " limit," or its equivalent

"limiting value," will be understood from its use in the

preceding Articles. The following may be given as a defini-

tion :
" The limit of a function for an assigned value of

the independent variable, is that value from which the

function can be made to differ as little as we please, by
making the independent variable approach its assigned

value."

14. In the example " the limit of—^— = 1 when 6 = 0," it
u

is obvious that —-g- is never equal to 1 so long as 6 has

any value different from zero, and if we actually make

= 0, we render the expression —^— unmeaning. In other

words, although —^— approaches as nearly as we please to

the limit unity it never actually attains that limit. Some-
times in the definition of a limit the words " that value

which the function never actually attains" have been in-

troduced. But it is more convenient to omit them ; for if

we take any function of x, say , and ascribe to x any

value, say 1, we can determine the actual value of the
function, which in this case would be £. According to the
definition we have given in the preceding Article we may

x
if we please call \ the limit of -when x approaches unity.

The same holds for any finite value of any function, and
generally according to the definition of a limit laid down
in Art. 13, any actual value of a function may be considered

as a limiting value.
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15. Limit of (l + -). The following theorem, which

we proceed to demonstrate, is very important. When x

increases indefinitely the escpression ( 1 + - ) approaches a

certain limit which lies between 2 and 3.

In the first place suppose x a positive whole number, =m
say ; we shall prove that the above expression continually in-

creases with m, but can never reach the value 3. Assuming
the Binomial Theorem for positive integral exponents, we have

, m (m - 1) (m- 2) ... {m - (m - 1)} / 1
V"

""*r
1.2...m \m)

which may be written

(i + l)^ 1+U^ + (
1 "^( 1 "»)

+ ,.,
\ mj 1 1.2 1.2.3

V ml \ ml \ ml
1.2... to "^ '

Similarly

/
, 1 \m+1 .1, 1 ~wTl

, l
1 ~m+iA 1

~wr+i )
,

l
1+fTW =1+

T + 1.2
+ m +

(i—L-Vi L-Wi-UJLJ)
, V w + l/V TO+1/ \ m + 1/- +

1.2. ..(m+1) " -W-

Now in the last two series we see that their first and
second terms are equal, but the third term in (2) is greater

than the third term in (1); also the fourth term in (2) is

greater than the fourth term in (1), and so on; moreover

in (2) there is one term more than in (1). Hence

/ I \m+l / iy
[
l + f+W "

gn"tar than
I
1 + w •
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Therefore if we put m successively equal to 2,, 3, ±, &c the

expression (
1 + — ]

continually increases.

12 3
But since 1 .1 ,1 , ... are all positive and

m m m
all less than unity it follows that the series in (1) cannot be

greater than

1+
T
+ r2 +n2^+

i.2.3.4
+ - + i72Z^; (3)>

however great m may be.

But the series in (3) is loss than the following series,

•which forms a geometrical progression, beginning at the

second term, 1111 1

+
T
+

2
+ 2"2 +

2
3 + "*+ 2"'-1 '

that is, the series in (3) is less than

,

1 "2s
„ 11+ r or3--^.

Hence (l-\ ) is less than 3, however great to may be.

Since then the expression (1 -\— j continually increases

with m, but at the same time cannot exceed 3, there must
be some "limit" towards which it approaches as m is in-

creased indefinitely. We shall use the symbol e to denote

this limit, and shall hereafter shew how to calculate its

approximate value : we say approximate, for it will prove

to be an incommensurable number. See Art. 115.

16. We might perhaps leave it to the student to convince

himself that the limiting value of ( 1 + — ) must be the same

whether we attribute to x a succession of integral or of

fractional values increasing without limit. But it may be
formally shewn thus. Whatever fractional value be ascribed

to x there must be two consecutive integers, say m and rn+1,
between which such fractional value lies. Suppose then
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I + - greater than 1 + - and less than 1 + — , where n is putx n m r
form + 1.

Then (l +
-J

lies between (l + -] and (l + —

Y

Suppose x=m + a= n — /3, so that a and /9 are proper frac-

tions, then

/ IV / 1\"~P f 1 \ m+a
(1 +

-J
lies between f 1 + -

J
and f 1 + — J ,

that is, between

{K)T--{K)T
;

Tf a; be now supposed to increase without limit, so also do

in and n. The limit of f 1 +
-J

and of (
H

J
is e, and as

1 and 1 +— have unity for their limit it follows that then m J

limit of (1 +
-J

is e.

17. We may shew that the limit of
(
1 + -

J
is also e

when x is negative and increases without limit. For put

x = —z, then we have to find the limit of
(

1
) when z

increases without limit.

No.
(.-J)--"-

1

z I \z

ir+1

= (—
J

> where y = z - 1,

=iK)T\
Let now a; increase numerically without limit, then z, and

consequently y, do the same. The limit of ( 1 + - 1 is e, and

that of 1 + - is unity, and therefore the limit of
(
1

J
is e.
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18. Since the limit of ( 1 + -) when x increases indefi-(-3
l . .

-
nitely is e, we see, by putting - = z, that the limit of (1 + z)'

when z is diminished indefinitely is also e. Hence we can
i

deduce the limit when z = of (J + az)', where a is any
constant quantity. For

(l+az)'=j(l+az)4°.

Now as z diminishes without limit, so also does az, therefore

the limit of (1 + az)" is e,

i

and the limit of (1 + az)' is e°.

19. Since loga (l + *)"=jlog (l + *),

a being any base, we have, by diminishing z indefinitely,

the limit of
loS«( 1 + 2

) = the j^ of log. (i +,)",

= log„e;

and, putting e for a,

the limit of
12&il±f) = i.

z

20. From the equation

ioga (i +s)L^4±i),
we deduce, by assuming 1 + z = a",

Now suppose z to diminish without limit, and therefore also v.

We have then

the limit of — when v =
a —1

i

= limit of log, (1 + z) ' when z =
= loga e.
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Therefore the limit of when v =
v

1

log,e

= log, a.

Suppose a = e",

therefore /i — log,, a,

and the limit of when v = is u,.

v n

21. The following results will be found in works on
Trigonometry. If the variable x diminish indefinitely

the limit of = 1,
x

the limit of = 1,
x

the limit of = 1.
x

22. A few general remarks may be made at the close

of this Introductory Chapter. It frequently happens that

a person commencing this subject is discouraged at the outset

because he cannot discover or imagine any practical appli-

cation of the somewhat abstruse points to which his attention

is directed. From what he remembers of the early portions

of those branches of mathematics with which he is already

acquainted, he is led to expect that almost as soon as he
begins the Differential Calculus, he will be able to compre-

hend its general scope, and -to make use of it in solving

algebraical and geometrical examples ; and being disap-

pointed in this expectation, he is apt to imagine as a reason

for if, that he has not correctly understood the elementary

principles of the subject. It may, therefore, be of some
service to assure him, that the difficulty of which he com-
plains is probably owing much more to the nature of the

subject than to his own want of comprehension. The student

must, of course, leave to his teacher the task of arranging
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the different portions of the subject he is studying, and of

selecting the definitions necessary to be understood ; and in

reading a work on the Differential Calculus, he must be

satisfied at first with reflecting upon the meaning of the

definitions, and examining whether the deductions drawn by
the writer from those definitions are correct. There are

innumerable applications of the elementary -principles of the

Differential Calculus, as will be seen m the Chapter on

Expansions and those following it, but we shall at first

confine ourselves merely to the logical exercise of tracing the

consequences of certain definitions.

A difficulty of a more serious kind which is connected with
the notion of a limit, appears to embarrass many students

of this subject, namely, a suspicion that the methods em-
ployed are only approximative, and therefore a doubt as to

whether the results are absolutely true. This objection is

certainly very natural, but at the same time by no means
easy to meet, on account of the inability of the reader to

point out any definite place at which his uncertainty com-
mences. In such a case all he can do is, to fix his attention

very carefully on some part of the subject, as the theory
of expansions for example, where specific important formula
are obtained. He must examine the demonstrations, and if

he can find no flaw in them, he must allow that results

absolutely true and free from all approximation can be le-

gitimately derived by the doctrine of Limits.

23. The demonstration in Arts. 15, 16 of the proposition

that
(
1 + - ) tends to some fixed limit as x increases in-

definitely, has been givpn in several elementary works on
the Differential Calculus, and it is accordingly retained here.

But the following method, in which the Binomial Theorem
is not assumed, is worthy of notice.

We shall first establish two inequalities.

If /3 and \ are positive quantities, and A, greater than
unity,

{l + B)K is greater than l + A/3 (1).
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If /3 and p are positive quantities, and /a/S less than unity,

(1 +/3)* is less than r~Z~s ^'

To establish these inequalities we shall use the known
theorem that the arithmetical mean of any number of posi-

tive quantities is greater than the geometrical mean ; see

Algebra, Chapter Li.

Let \ = - , where p and g are positive integers. Take p

quantities, q of which are equal to 1 + -
ft, and p — q equal to

unity. Then their arithmetical mean is
y

,

that is 1+/3; their geometrical mean is (l + -/?)'• The

p

former is the greater ; and therefore (1 + /3)
s

is greater than

1 +£/S. Thus (1) is established.

S 1* ...
Let fi = - , and (ifi = -

, where r, s and t are positive in-
t t

tegers ; thus @ = - . Take s + t quantities, s of which are

equal to l+- :
and t equal to 1 -£. Then their arithmeti-

cal mean is — —r->
, that is unity; their geome-

s + t

trical mean is \(l + -] f 1 ~
r) [

• The former is the greater;

therefore ( 1 + -)( 1 -j) is less than nnitJ> and therefote

*

(l + -) ' is less than —

—

. Thus (2) is established.
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In (1) put /3 =— , and raise both sides to the power y

;

then

/ 1 \
Xy

t 1\Y
I H—

J
is greater than 11 +

that is, if B be greater than y,

U + jj is greater than (l +
-J (3).

as xFrom (3) we see that (1+-) continually increases

increases. It does not, however, pass beyond a certain finite

limit ; for in (2) write — for B, and raise both sides to the
fj,y

power 7 ; then

(1 \w 1H ) is less than ——— if 7 be srreater than 1.

Hence, if we put 7=2, we find that (1 + -) can never

exceed 4. By ascribing to 7 greater values we shall obtain

a closer limit for (l + -j. If we put 7 = 6 we see that

(1 + -) must be less than (-) , and therefore less than 3.

Since then the limit of / 1 + -
J

, as x becomes indefinitely

great, must lie between N +-) and f
-J , where n has

any positive value, we may, by ascribing successive integral

values to n, easily approximate to the numerical value of the
limit.
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CHAPTER II.

DEFINITION OF A DIFFERENTIAL COEFFICIENT.
DIFFERENTIAL COEFFICIENT OF A SUM, PRODUCT, AND

QUOTIENT.

24. We shall now lay down the fundamental definition

of the Differential Calculus, and deduce from it various

inferences.

Definition. Let <j> (x) denote any function of x, and
<}>(x + h) the same function of x + h ; then the limiting

value of — jr— , when h is made indefinitely small,

is called the differential coefficient of <j> (x) with respect to x.

This definition assumes that the above fraction really has

a limit. Strictly speaking, we should use an enunciation of

this form—" If— 1— have a limit when h is made
n

indefinitely small, that limit is called the differential coefficient

of (x) with respect to x." We shall shew, however, that

the limit does exist in functions of every kind, by examining
them in detail in this and the following two Chapters. We
give two examples for the purpose of illustrating the defini-

tion.

Suppose $ (x) = a?

;

therefore
<f>

(x + h) = (x + h)
2

;

therefore
»(»+*j-+(«) . (»+y-*

= 2xh+j^
=2x+K

a

and the limit of 2x + k when h = 0, is 2x ; therefore 2x is the

differential coefficient of a;' with respect to x.
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Again, suppose
<f>

(x) = g-^

;

therefore
<f>

{x + h) =
b + l + h

>

therefore * (* + k) ~ * ^
h (b + x)(b + x + h)'

The limit of this when h = is

a

which is therefore the differential coefficient of ^ with
o + a;

respect to x.

25. We now give the notation which usually accompanies
the definition in Art. 24.

Let
<f>

(x) = y, then
<f>

(x + h) —
<f>

(x) is the difference of the
two values of the dependent variable y corresponding to the
two values, x and x + h, of the independent variable. This
difference may be conveniently denoted by the symbol Ay,
where A may be taken as an abbreviation of the word
difference. We have thus

Ay = <j> (x + h.) — s}> (x).

Agreeably with this notation, h may be denoted by Ax, so that

Ay _ <f>
(x + h) —

<f>
(x)

Ax~ h

It may appear a superfluity of notation to use both h and
Ax to denote the same thing, but in finding the limit of the
right-hand side we shall sometimes have to perform several

analytical transformations, and thus a single letter is more
convenient. On the left-hand side Ax is recommended by
considerations of symmetry.
We say then, according to the definition in Art. 24, that

Av
the limit of -~

, when Ax is diminished indefinitely, is the

differential coefficient of y or
<f>

(x) with respect to x. This

limit is denoted by the symbol -f- •
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26. The symbol -JL we consider as a whole, and we do

not assign a separate meaning to dy and dx. As, however,
Ay .^ is a real fraction in which Ay and Ax have definite

meanings, the student will very possibly suspect that some
meanings may be given to dy and dx which will enable him

dy
to regard jasa fraction. This suspicion will probably be

strengthened as he proceeds in the subject and finds that in
dy ,many cases -j- possesses the properties of an algebraical

fraction. We remark that there are indeed methods of
treating the Differential Calculus in which meanings are
given to dy and dx, and we shall recur to them hereafter

(see Chap, xxvii.), but at present we define the symbol —
dx

as above, and only leave to the reader the task of examining
whether we are consistent with ourselves in the inferences
we proceed to draw and express by means of our definitions

and symbols.

The following notation is also frequently used. If
<f>

(x)

denote any function of x, then <£' (x) denotes the differential

coefficient of
<f>

(x) with respect to x.

The operation of finding the differential coefficient of

a function is called " differentiating" th&t-function.

27. Differential coefficient of a sum of Functions.

Let y and z denote two functions of x, and u their sum.
Suppose that y, z, u, denote the values these functions

assume when x is changed into x + h. Then

u=y + z,

u' = y' + z,

therefore v.' — u = y' — y + z'— z-

that is Am = Ay + Az.

Divide by h or Ax, then

Au _ Ay Az

Ax ~~ Ax Ax
'
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Now let h diminish without limit, and we have

du _dy dz

dx dx dx'

Hence the differential coefficient of the sum of two functions is

the sum of the differential coefficients of the functions.

Similarly, if u — y — z

du _ dy dz

dx dx dx'

28. The results.of Art. 27 may he extended to the case

of any number of functions connected by the signs of addition

or subtraction. For example, let

u = w + y + z,

then, as before, Au = Aw + Ay + Az
;

, „ Au Aw Ay Az
therefore _ =_+^ +_

;

therefore, proceeding to the limit,

du dw dy dz
- = 1-— H .

dx dx dx dx'

29. Differential coefficient of the product of two Functions.

Let <£ (x) and yfr (x) denote two functions of x, and let

U = <f)(x) ^r(x).

Change x into x+h, and let u + Au denote the new product,

then u + Au = (j> (x + It)
-ty

(x + A),

therefore Am = <£ (x + h) yfr (x + h) — $ (x) -f (x)

= {«/> {x + h) -ij>.(x)} yfr(x + h)+<f> (x) {f {x+ h) - + (x)}
;

Am 4>(x+h)-<f>(x) . ,. yfr(x+h)--^(x)
therefore -r-=— ^

—

?-^-ty(x+h) +— ^
—3-^ <j>(x).

Suppose now h diminished indefinitely ; then the limit of

— t—— is the differential coefficient of (j>(x) with
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respect to x, or f (as); the limit of ^ (*+ *
)
~ "fr (

g
)

js the
h

differential coefficient of ty(x) -with respect to x, or -^'(x);
the limit of i/r (a: + A) is i/r (ai)

;

therefore -^ = <f>
(x) i/r (x) + y}r' (x) <£ (x).

Hence the differential coefficient of the product of two functions
is found by multiplying eachfactor by the differential coefficient

of the other factor and adding the resulting products.

Divide each side of the last result by u or
<f>

(x) ^ (x) ; thus

1 du _<f> (x) t}t'(x)

u dx
<f>

(x) i/r (a;)

"

30. An equation similar to that just obtained holds for the

product of any number of functions. For example, let
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31. Differential coefficient of a quotient.

Let ij>(x) and >}r(x) denote two functions of x, and let

f{x)

Suppose x changed into x + h, and let u + Au denote the

new value of the quotient. Then

therefore A.- **8 *** + (x)
TM± {X + h)

yr(x + hjy (x)

_
{cf>(x + h)-<j> (x)} Vr (x) -[jr(x + h)-+(x)}if> (X)

_

yfr{x + h)^{x)

+_(z + h)-4>(x)
^ {x) _

jr(x + h)-Mx)
^ {x)

therefore -r— = ,,.,,,,
Ax Tfr{X + h)>fr{x)

Let A diminish without limit, then

du
<f>

(x) ifr (x) — yjr (x)
<f)

(x)

Si,
=

[fix)}''
"

Hence we have this rule : To find the differential coefficient

of a quotient ; multiply the denominator by the differential

coefficient of the numerator and the numerator by the differential

coefficient of the denominator ; subtract the second productfrom
the first and divide the result by the square of the denominate?:

32. The result of Art. 31 may also be obtained thus :

Since u = J
r-r-. ,

Tjr(x)

therefore <j> (x) = wsfr (x)

;

therefore, by Art. 29,

therefore + (x) * = # (x) -^g *' (x)

,

therefore & fM%|MlM.
ax \Y\X)\



DIFFEBENTIATION OF A CONSTANT. 21

33. Differentiation of a constant.

If y = c where c is a constant, then ~¥ = 0. For to say

that y is equal to a constant is the same thing as saying that
y cannot vary; hence Ay = Q, therefore

Ax
whatever be the value of Ax ; therefore

f = 0.
ax

Hence, making <£> (x) = a constant c in Art. 29, we have

This may of course be obtained directly thus

:

Let u = cyfr(x),

then u + Au = ci|r [x + h)

;

therefore
Au jr(x + A)-^{x)
Ax h

therefore -=- = c-^r (x)

.

So by putting </> (a;) = c in Art. 31, we obtain

, c cyjr' (x)

Wi WW
dx

which likewise may be found independently.

34. We have now defined a differential coefficient and
have shewn how the differential coefficient of a compound
function can be found as soon as we know the differential

coefficients of the component functions. Before we proceed

to the rules for determining the differential coefficient of any

known algebraical expression, we shall give some geometrical

illustrations which will assist in forming a conception of the

meaning of a differential coefficient and afford some hints as

to the applications which can be made of the doctrine of

limits.
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The new value of the ordinate is represented in the figure

by NQ, and NR represents Ay. The fraction -^ represents

the ratio of the increase of the function to the increase of
the variable, and is equal to the trigonometrical tangent
of the angle NMR formed by the secant MN with the axis
of x.

37. It is evident that this fraction is a natural measure of
the degree of rapidity with which the function y increases
when the independent variable x increases; for the greater
this fraction is, the greater will be the increase of the func-
tion y corresponding to the given increase Ax of the variable.

But it is important to observe that the value of A
— will
Ax

depend not only on the value given to x, but also on the

magnitude of the increment Ax, except in the case in which
the curve becomes a straight line.

If then we left this increment arbitrary, it would be im-

possible to assign to the fraction — any definite value, and

it is thus necessary to adopt some convention which will

remove this uncertainty.

38. Suppose that after giving to Ax a certain value, to

which will correspond a certain value for Ay and a certain

direction for the secant MN, we make the value of Ax
gradually diminish and become ultimately zero. The value

of Ay will also gradually diminish and become ultimately

zero. The point i^will move along the curve towards M, and
we shall find in every example we consider, that the straight line

MN will approach towards some limiting position MT. This

is in fact equivalent to the assertion made in Art. 24, that

by examining every case in detail we could shew that every

function has a differential coefficient. The limiting position

which the secant assumes when N coincides with M is called

the tangent to the curve at the point M, and thus -^ is the

trigonometrical tangent of the inclination to the axis of x
of the tangent line to the curve.
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Ay
39. The limit of the fraction -~

, when Ax is diminished
Ax

indefinitely, may be considered as affording a precise measure
of the rapidity with which the function increases when the

independent variable increases, for there remains no longer

anything arbitrary 'in the expression. The limit -£ does not

depend on the value assigned to Ax nor upon the form of

the curve at any finite distance from the point whose co-or-

dinates are ar and y; it depends only on the direction of the
curve at this point, that is to say, on the inclination of the
tangent line to the axis of x.

40. As an example of the preceding, we will determine
the differential coefficient of \/(a

s — x"), and point out its

geometrical application.

Let y= *J(a* —a?),

then y + Ay = V{a" - (a;+ hf}

;

therefore Ay—>J {a? — {x+h)') — >J (a
! — x2

)

,

a?-(x+h)*

</{a*-(x + hy\ + </(a'-x*)'

_ -(Qxh + h
2
)

therefore
Ay _ 2x + h

Ax V{a* - (x 4 A)
2

} + V(a*- a?)
'

The limit of this when h is made indefinitely small is

VCa'-a?)'

therefore
dy

dx -J{c? — x*)
'

It will be seen that we have in the above example used an
algebraical artifice, namely, that of multiplying both numera-
tor and denominator of a fraction by */{a

2—(x+h) 2
}+ *J(a*—x'),

Av
in order to obtain -~- in a form the limit of which can be
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easily seen. In treating any example without the aid of
general rules, we should frequently find our success depen-
dent upon our readiness in effecting such transformations; but
the next two Chapters will explain methods of making the
problem of ascertaining any differential coefficient depend
upon the knowledge of those of a few standard functions.

41. From analytical geometry we know that the equation

y = V(a
2 — a;

2
) represents a circle, and it is also known from

the principles of that subject that the tangent at the point

(a;, y) of a circle is inclined to the axis of x at an angle

whose trigonometrical tangent is —j^ r . Also in the

case of a circle the straight line which we have defined as the

tangent is the same straight line as that which fulfils the con-

dition of " touching the circle," given in Euclid, Book III.

42. In the Chapters on the geometrical application of the

Differential Calculus we shall recur to the subject of tangents.

We have given the above example here that the student may
at this early period acquire the conviction that important uses

may be made of a differential coefficient.

43. The following is another geometrical application. The
area OAMP, see the diagram to Art. 35, must be some func-

tion of x, since it is a definite quantity when we assign a

definite value to x, and varies when x varies. Denote this

function by u, and PQ by Ax ; then

m + Am = area OANQ,

therefore Am = area MNQP;

therefore Aw lies between MP. PQ and NQ .PQ,

that is, between yAa; and (y + Ay) Aa;

;

therefore -r- lies between y and y + Ay.

Hence, diminishing Ax, and therefore Ay, without limit, we

have
du

dx
= y-
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CHAPTER III.

DIFFERENTIAL COEFFICIENTS OF SIMPLE FUNCTIONS.

44. Differential coefficient of x" where n is a positive

integer.

Let y = xn
, therefore

y+ Ay = (* + *)",

therefore Ay = (x + h)
n — x"

= nx"-
1
h +

n{n
i

~
1)
x"^h*+.. +k";

therefore ^ = waT1 +"^"^ aT'h +...+ k"-\
Ax 1.2

Diminish h without limit, and we have

ax

45. The same result may also be obtained by means of

Art. 30. For let

where the n quantities yt , y2 , ... y„, are all functions of x;
we have then

1 du = 1 dy
l

1 dy
% ^ 1 dyn

udx y
l
dx y2

dx " yn dx
'

If now yl
= x.
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Put then ylt y2
, ... yn , all equal to x; thus u becomes x",

and we obtain

1 du _n
udx x'

therefore -=- = nx"'
1
.

ax

46. If n be not a positive integer, we may by assuming
the truth of the Binomial Theorem for fractional exponents

dxn

proceed as in Art. 44 to determine -,- . But in that case we

shall require to assume that " if we have a series containing

an infinite number of terms and each term becomes ulti-

mately indefinitely small, the sum of the terms becomes so

too." To avoid this assumption we adopt another mode.

47. Differential coefficient of x" the exponent n being un-

restricted.

Let y = x", therefore

y+Ay=(x + h)",

Ay _ (x + h)
n - x"

therefore
,Ax h

x + h\

h

Now whatever be the value of n, positive or negative, whole

or fractional, it may be supposed = -—- , where p, q, r, are

positive integers.

T .
x + h

Let = z,
x

therefore h = x(z-l),

Ay .-^"-1
and Ax

= x T=T'

As h diminishes indefinitely z approaches the limit 1, and we
a* — 1

have to find in that case the limit of——— -
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Suppose v—z r
, then

z*-l z
r -1 xTq -\ if-rf

or
z-1 z-\ v"-l v"(v

r -l)

_ v"-l~ («*-!)

t;'(-«
r -l)

v3 («
M

+t>'-
2
+... + l)

This last result is obtained by dividing both numerator and
denominator of the preceding fraction by v— 1. Let now v
approach the limit 1, then the limit of the last fraction is

P-2
r '

therefore -^ — S^L2 x"-i - nx
"-1

_

ax r

48. Differential coefficient of of. Second method.

Let y = x", therefore

y + Ay = {x + h)
n
,

therefore -~- = rAx h

•ir«
,+SH

Assume - = z and (1 + z)' — 1 = v, then z and a are quantities

which diminish indefinitely with h. Thus

A ^ •

Aa; z

From the above assumptions

(l + *)" = l+i>,

therefore l°g.(l + v) — n log,(l + s).
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From Art. 19 the expressions

l0ge(l+*)
and

lQg.(l+t>)

Z V

both tend to the limit unity. Hence we may assume

v

lo&(l + «) = 1 + 8,

where each of the quantities 7 and 8 has zero for its limit.

Hence

v = l_+S log.(l + «)

z l + 7
-

loge (l+^)

= n from above

;

1+7

V
therefore the limit of - is n, and

z

dv _ „v~»-— = nx .

ax

49. Differential coefficient of a
x

.

Let y = a
x

, therefore

y + Ay = ax+li = aV,

therefore A =a —

A

-
'

ah— 1

Now, by Art. 20, the limit of , , when h is indefinitely

diminished is log,a; therefore

Next let y = a°
z

; then
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51. Differential coefficient of sva. x.

Let y = sin x, therefore

y +Ay = sin (x + h),

therefore Ay = sin {x + h) — sin x

h\ . h= 2 cos (x + -
J
sin - , by Trigonometry,

h
. ,. sin -

therefore -^ = cos f a; + - ) —f— .Ax \ 2j h

. h
S1D-

Now when h is indefinitely diminished, the limit of -
h

is unity by Art. 9, therefore
2

dy
-£- = cos x.
ax

52. Differential coefficient of cos x.

Let y = cos #, therefore

y + Ay = cos (a: + h),

therefore Ay = cos (x + h) — cos- a:

('

h\ . h
- :- am ( a; + -

I sin -

,

therefore
Ay . f ^h\

Sm
2

dy
therefore , - = - sin x.

dx

53. Differential coefficient of'tan x.

Let y = tan x, therefore

y + Ay= tan (x + h),
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therefore Ay = tan (x + h) — tan x

_ sin (x + h) sin x
cos (x + h) cos x

sin (x + h—x) sin h

therefore

therefore

cos (x + h) cos x cos (x + h) cos x

'

Ay sin h 1

A;r
~~

h cos (a; + h) cos <r

'

<&B COS
2 X

*

54. Differential coefficient of cot x.

By proceeding as in the last Example, we find that if

y = cot x,

dy = 1_
dx sin

2 x

'

55. Differential coefficient of sec x.

Let y = secx, therefore

y + Ay = sec (a; + A),

therefore Ay = sec (a; + h) — sec a;

_ 1 1 _ cos x — cos (x + h)

cos (x + h) cos a; cos x cos (a; + h)

a . ( h\ . h2sm(g + -) 6m-

cos a; cos (jc + A) '

therefore

. sin I x + ~ '

Ay V 9/
sin (a; + - I sin

Aa; cos x cos (x + h) h

2

lt » dy sin a:
therefore -,— =—T ,

dx cos a;
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56. Differential coefficient of cosec x.

Let y = cosec x
;
proceed as in the last example, and we

find

dy _ cos x

57. Since tan x, cot x, sec x, and cosec x are all fractional

forms, we may deduce the differential coefficient of each of

these functions by Art. 31 from those of sin x and cos x.

Thus, let

sin*
y = tan x = ,J

cos a:

d sin x . d cos x
cosx —

5

sina;-

therefore -^ =
x

„ . Art. 31,
ax cos x

'-, Arts. 51 and 52,
cos a;

1

cos a;

Similarly we may proceed with cot x, sec x, and cosec cc.

Since vers x = 1 — cos a;, the differential coefficient of vers x
by Arts. 27 and 33

= — differential coefficient of cos x

= sin x.

T. D. C.
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CHAPTER IV.

DIFFERENTIAL COEFFICIENTS OF THE INVERSE TRIGONOME-
TRICAL FUNCTIONS AND OF COMPLEX FUNCTIONS.

58. Let y = <f>
{x), so that y is a known function of x ; it

follows from this that x must be some function of y, although

we may not be able to express that function in any simple

form. The best mode for the reader to convince himself of

this will be to recur to algebraical geometry and suppose x
and y to be the co-ordinates of a point in a curve the equation

to which is y = <j>(x). For every value of x there will be
generally one or more values of y, positive or negative, as

the case may be. So for any value of y there will be
generally one or more definite values of x, which, as they
really exist, may be made the subjects of our investigations,

even although our present powers of mathematical expres-

sion may not always furnish us with simple modes of repre-

senting them.

59. A simple example will be given in the equation

y = x*-2x+l (1).

Solve this equation with respect to x, and we have

x=l±2/4
(2).

Here (2) shews that if any value be assigned to y we must
have for x one of two definite values.

Now in (1), x being the independent variable and y the
dependent variable, we have by Arts. 28, 33, and 44,

| = 2*- 2 W-
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In equation (2) we may treat y as the independent variable

and x as the dependent variable, and we find, by Art. 47,

I-***- w.

From (2) x - 1 = + y*,

therefore = + y~K
x-1 -"

Hence, from (4), g =^T) ^
Comparing (5) with (3), we see that

^ x -- = 1.
dx dy

The theorem which holds in this simple case we shall now
prove to be universally true.

m d\l dx
60. To prove f x T = l.* dx ay

Let y = *(*) W.

since from this it follows that x must be some function of y,

suppose x = yfr(y) (2).

Let x in (1) be changed into x + Ax, in consequence of which

y becomes y + Ay, then

y + Ay = <j> (x + Ax) (3).

Now in (2) it may happen that x has more than one value

for any assigned value of y, but if the value of y in (2) be

the same as that in (1), then among the values which x can

have, one must be the value we supposed assigned to x in (1).

Hence we may suppose x and y in (2) to have the same

values as the same symbols respectively had in (1). In equa-

tion (2) change y into y + Ay, where y has the same value

as in (1) and (3), and Ay the same value as in (3). Then

among the values which the "dependent variable is suscepti-

ble of in (2), one must be x + Ax, the symbols having the same

values as in (3).

D2
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Hence x + Ax = i/r (y + Ay) (4).

From (1) and (3)

From (2) and (4)

Ay _ ft (x + Ax) — ft (x) ...

Ax~ Aa;
W '

a# _ t(y+ Ay)-Vr (y)
r6

\

Ay " Ay " W '

In (5) and (6) the same symbols have the same values, and

since in that case -J^ x -j— = 1. we have
Aa; Ay

ft
(x + Ax) -

ft (x)
)f
f (y + Ay) - >/f (y) _

1
Ax Ay

Now diminish Aa; and Ay without limit, and we have

fWxfW = i;

or, as it may be written,

dy dx

dx dy

61. The demonstration, given in the last Article may
appear laborious. In reviewing it, the student will perceive

that this arises from the necessity of proving that the x, y,

Ax, and Ay, which occur in (5), have the same numerical
values as the quantities denoted by the same symbols respec-

tively in (6). This point is sometimes assumed, and it is

Aw Ax
considered sufficient to say " since -~ x -^- — 1 always, we

dii dx
have, by proceeding to the limit, -j - x -*- = 1," but it would

appear necessary at least that the assumption should be
noticed.

62. Suppose z =
ft

(x),

y=yfr(z),

so that y is a function of z, and z a function of x. It follows
that if we substitute for z its value in i/r (z), we make y an
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explicit function of x, and consequently y must have a dif-

ferential coefficient with respect to x. For example, if z = x*

and y = z
3
, we have by substitution y = x6

. Now this is

a function of x of which we know the differential coefficient,

by Art. 44. Hence -^ = 6x". But if z = cos x and y = a', we

find y = a?°sx, a function of x which we have not yet seen
how to differentiate. Hence the necessity and use of the rule

demonstrated in the next Article.

63. Differential coefficient of a function of a function

Let z = <f>(x) (1),

and y =&{*) (2),

so that y is a function of x ; required the differential coeffi-

cient of y with respect to x.

Let x be changed into x + Ax, in consequence of which
z becomes z + Az, and suppose in consequence of this change
in z, that y becomes y + Ay ; thus

z + Az =
<f>

(x + Ax) (3),

y + Ay = yfr (z + Az) (4).

Now suppose that by putting for z its value in (2), we obtain

y = F{x) (5),

where F(x) denotes some function of x. From the mode
in which equation (5) is obtained it follows that we may
suppose x and y to liave respectively the same values in (5)

as in (1) and (2), and also that

y + Ay = F(x + Ax) (6),

where Ax and Ay are the same quantities as have already

occurred in (3) and (4).

From these equations we deduce

Ay F(x + Ax)-F'x) e ,,. , ..

d=

—

—
Ai— from (5) ^ (6) '

2W(» + A.)-*M
from and

Az As

Az = 4>(x + Ax)-4>{x)
from aQd

}Ax Ax



38 DIFFERENTIAL COEFFICIENTS

where the same symbols denote throughout the same quan-

tities. Hence, since

Ay _ Ay Az

Ax
_
Az Ax

'

we have

F(x + Ax)-F(x) _ ^(z + Az)-^(z) <j> (x + Ax) -
<f>

(x)

Ax Az Ax
Now let Ax, Az, and Ay, diminish without limit, and we
obtain F' (x) = yfr' (z)

<f>'
(x)

;

or, as it may be written,

dy _ dy dz

dx dz dx

'

Hence the differential coefficient of y with respect to x is

equal to the product of the differential coefficient of y with

respect to z, and of the differential coefficient of z with respect

to x.

64. We may make a remark on the demonstration of the

last Article similar to that in Art. 61. It is often considered

sufficient to say that " -~ = -r - x -r- by the properties of

fractions, and therefore, by taking the limit, -j- = -j- j- ."

65. Differential coefficient of sin
-1

a:.

Let y =sin~'x, therefore

sin y = x,

therefore -j- = cos y, Art. 51,
dy *'

therefore -r~ = , Art. 60
dx cos y

Since siny = x, cosy=±*J(l—x*); the proper sign to be

taken will of course depend on the value of y ; we may there-

fore put

<fy = 1

dx" V(l-x2)'

remembering that the radical must have a negative sign if

cos y be negative.
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66. Differential coefficient of cos'
1
x.

Let y = cos
-1

a;, therefore

cos y = x,

therefore -r- = — sin y, Art. 52,
dy *•

therefore -f-=--. , Art. 60.
ax sin y

1

v(i-*y
See the preceding Article.

67. Differential coefficient of tan
-1

a; and cot
-1

*.

Let y = tan
_1
x, therefore

x = tan y,

therefore

therefore

dx
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But sec y = x, therefore cos y = -
, and sm y = — ,

SC SO

see Art. 65, thus

cfy = 1

dx x V (a;
2 — 1)

"

Similarly, if y = cosec"
1

*,

dy = 1

da; a; V (a;
2 — 1)

'

69. In the manner given in the preceding Articles the

differential coefficients of the inverse trigonometrical functions

are usually determined. They may however be found without

using Art. 60.

For example, suppose

y = tan
-1

a;,

therefore y + Ay = tan
-1

(x + h),

therefore Ay = tan
-1

(x + h) — tan
-1

a;

_1

i+x(x+h) - b? Trig°nometry.= tan

therefore -J^ = ? tan
*

Ax h 1 + x (x + h)

h
tan"

_ 1 l+x(x+ h)

1 + x2 + xh
'

h

1 + x (x + h)

Now let h diminish without limit, then

tan - —
the limit of

1 + « (g + *; = j Axt 21

] + x (x + h)

therefore -~ =
; .

dx 1-f ar
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70. Again, suppose y = sin"
1
a;,

therefore y + &y = sin"
1
(x + h),

therefore A# = sin
-1

(x + h) — sin
-1

a;

= sin-
1
[(a;+A)v(l-a;2)-^V'{l-(a;+A) !!

}].

by Trigonometry,

therefore % _ sin'' [(x+ h) V(l - g) - x V{l - (x+ hf}] _

Aar h '

put (x + h) V(l — a;
2
) — x V{l — (x + A)

2

}
= z for abbreviation,

., A?/ sin"
1
z sin

-1
z z

then -r* =—=— = . -

.

Aa; h z h

N 2 = (a; + A)V(l-a:*)-a;A/{l-(x + ft)
2

}
'

h h

(x + h)
2
(1 -x*) - a? {1- (x + hf]

~h[{x + h) V(l - a;
2

) + x V{1- (^ + A)*}]

2a; + A

"(jr + ^VU-**) +a;V{l-(a;+^) 2

}

;

thus the limit of T . when h = 0, is —77- ~ or -T .- j-
;

ft x v(l — ar) V (1 — x*)
'

sin"" ,2f

and the Umit of is 1, Art. 21 ; therefore
z

dy _ 1

dx~ */{l-x*)'

71. Differential coefficient of vers
_1

x.

Let y = vers"
1

a:, therefore

vers y=x,

therefore 1 - cos y = x,

therefore -=- = sin y,
dy

therefore ^ =^ = jQ^Tj) ~ J[T=V=W\
1

""
V(2a: - x2

)

'
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72. Differential coefficient of z°.

Let y = z", where v and z are both functions of x.

Take the logarithms of both members of the equation,

hence
logey = v log„z.

Now since these two functions of x are always equal, their

differential coefficients with respect to x must be so.

And
d\ogey _d\ogey dy

dx ~ dv di

'

'

- 1-$. Art. 50.
y ax'

Also the differential coefficient of v log6 s

dv

.

dlos.z .
,= -j- \og.z + v—&-

, Art. 29,

dv , v <£z

=^ l0g'Z+^ ;
Art " 63;

^, r 1 dy dv . v dz
therefore - -/ = ^- loe.s + - -=-

,

y ax dx ° z dx

1

dy _ v
fdv . w dz'S

dx \dx °' z dx)

'

73. If we compare Arts. 29... 31 with Art. 72 we may
deduce a general rule for the differential coefficient of a

composite function. Differentiate in order each component
function, treating all the others as if they were constant;

then add the results thus obtained.

It is advisable to call the attention of the student explicitly

to three different cases which beginners are apt to confound.

(1) If y = z° where z is a function of x and a is a constant,

then by Arts. 47 and 63

dy „_, dz

dx dx

'

(2) Ify = of where 2 is a function of x and a is a constant,

then by Arts. 49 and 63

dy
, , dz

Tx =
al°Z°a di-
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(3) If y = z" where both z and v are functions of .«, then
by Art. 72

dy _ v
/dv . v dz\

dx \dx °* z dx)

'

74. Differential coefficient of xn
. Third method. For

the other methods see Arts. 47 and 48.

The differential coefficient of xn is sometimes found thus

:

First prove as in Art. 44 or 45 that if n be a positive

integer, the differential coefficient of a;" is nx"'
1
.

If then n be fractional and positive, suppose it= ~ where

p and q are positive integers.

s
Let y = x" = x",

therefore y
q = a?.

Hence taking the differential coefficients of both sides

, , dy pxT1 p xT1

therefore ~ = „-, = - —
z,
—

^J~X=nxn~\

<1

The rule is thus established so long- as n is positive.

If n be negative suppose it = — m, so that m is positive.

Let y = as"", therefore

y

therefore 1 = yxm.

Differentiate both sides, and we have

= xm<^- +ymxm-\ Arts. 29 and 33,

therefore -# = -^ = - maf"
-1

da; x
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Hence the rule for differentiating x" is universally esta-

blished.

7o. We shall now give some examples of the preceding

rules for finding differential coefficients.

(1) Let y — sin ax.

Put ax — z\ therefore y = sin z,

and ^ =^ >Art63 .

dx dz ax

But -jf = cosz, Art. 51,
dz

dz
and -y- = a, Art. 33,

dx

therefore -f- = a cos z = a cos ax.
dx

(2) Let y = sin (log a;).

By logx without any base specified, we mean log.x.

Put log x — z,

therefore y = sin z,

and ^=^#. Art. 63.
ax dz dx

But -T- = cos z, Art. 51,
dz

$- = -, Art. 50,
ax x

therefore
dy _ cos z _ cos (log x)

dx x x

(3) y= log (sin a;).

Put sin x = z,

therefore y = log z,

and % =
d
lf-, Art. 63,

cLc dz dx

1 cos x= - cos x = — = cot a;.

z sin x



(4) y = log

DIFFERENTIAL COEFFICIENTS. 45

a + bx

a — bx'

-r, a + bx
Put =— =3,

a — bx

therefore £ =MgzM +JM^
, Art. 31

.

ax [a — ox)

2a6

{a-bxf

., ~ dy 1 2a& lah
therefore

dx z (a — fee)* a* — 6
a
-c*

'

This example may also be solved by putting

y = log (a + bx) — log (a — bx),

therefore
dy _ b b 2ab

dx a + bx a — bx a'
2 — bV

(5) y = cos
3.3

Put 5 = Z,
X

therefore y = cos
_1

z,

dy dy dz
and -f- = -f -j-

.

ax dz dx

dy_ _L_

dz~ V(l-a2

)

1 -of

Now %? = - / Art. 66,

4'-^)}4 - 3W[ ~
V(x

6- to4 + 24x'- 16)

'

dz - 6a:
4 - 3a;

2
(4 - 3a?) . . _.

-5- = 5 , Art. 6 1 ,

dx or

3 (a?- 4).
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therefore ^ = -
V(a;

e_ 9a, + 24x>_ J6)
-
"^

~"

-3(x2 -4)

""icVK^-i)^-*) 2

} xV(^-i)'

4 — 3a;
2

In differentiating 5— we made use of the rule for

finding the differential coefficient of a fraction. By putting

the expression in the form

£_3
x3 x'

that is, 4af3 - 3a:
-1

,

we obtain for the differential coefficient

- 12a;-"
4 + 3X

-2
, Art. 47,

3-M^i)
, as above .

X

It may be observed that cases of this kind frequently occur

in which we may adopt more than one method. The student

will find it very useful in rendering him familiar with the

rules, to obtain his results, if possible, by different methods.

^{ax(x-Sa)}W V </{x-4.a)
'

It is often convenient to take the logarithms of both sides of

an equation before differentiating. Thus, from the above,

we have

log y = \ {log a + log x + log (x — 3a) — log (x — 4a) j.

Take the differential coefficient of each member of the equa-
tion, therefore

y dx 2 \x x — Sa x — 4a)

a:' - Sax + 12a'
~ 2x (x - 3a) (x - 4a)

'
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therefore % = ^a
'
(?-***+ IV)

dx 2 {a: (a -So)}* (a -4a)*

(7) y = tan-^.

Put -=z, therefore y = tanJ z,
a

,, ,. dy 1 dz
therelore -f = ,

—
dx l+z dx

1 1 a

.
,

x a* a1
4-a;

8

a

(8) Lety-tan- Jffi^ .

Put —Ti—;rV\ = z \ therefore y = tan
_1

z,
a (a

2 - 3a;
2

) '
" '

, dy dy dz 1 dz

dx dz dx 1+z2 dx'

Now dz - 3 (a' ~ X'

} (
a' ~^ + 6x

(
3xa* ~ **> A^ „

dx" a(a2 -3xa

)

8 ,
Art 31,

_ 3(a4 +2aV + a;
4

)

a(a2 -3x2

)

2
•

And by reduction we find that

1 _ a2
(a

i -3xy
1-t-z

2
(a' + a2

)
9

'

Therefore -r = -« 5

.

dx a + x

In fact we have from Trigonometry

. 6d X X ~\X
tan —j-i—t-jt-= 3 tan -

,

a (a
3 - 3x2

)
a

7 r\

and therefore the value of -y- ought to be ,-—

,

dx ° a + x
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It is obvious that other self-verifying examples may be

constructed on the model of this example.

-i I e
x
cos x \

<
9
> '- ta (f+?d

,, e cos x
Put

1 + e sin x

thus 2/ = tan
-1

z,

, , dy 1 dz
therefore -J- = 5

-,- .

ox 1 + s ax

dz _ (e'cosa:—e*sinx) (l+e
r
sina;)-e

:ccosx(e
I
cosa;+e

T
sina;)

JNow
dx

=
(l + e*sinx)

2

_ e
1
(cos a; — sin x— e

x
) m=

(l + e^sinx)* '

1 (l+e^sinx)'

l + z*~l-r2e
I
sinx-|-e

!" ;

, , dy _ e
x
(cos a;— sin x — e

x
)

dx 1 + 2e
I sinx+ e

ia

(10) y = sin a; tan
-1 x ax log x.

dv ,

,

sin x ax log a;

-^- = cos x tan a; a log x H g2-
dx &

1 + x

, , , , sin x tan-1 x a* . . „„
+ sin x tan"

1x a log a log x H . Art 30.

76. The differential coefficients of the simple functions are

here collected for the sake of refereuce.

y = x".

y= loga x.

y = a*.

dy =
dx

dy
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. X dy 1 X
v = sm - . -T

1 = - cos - .a a dx a a

x dy 1 . x
y = cos - . -f- =— sin - ." a ax a a

x dy 1 ,x
y = tan-. -/=-sec-." a dx a a

,x dy 1 „x
v = cot - . -7- =— cosec - .

* a ax a a

. x

a; dy_\ a
^ — a' dx a „x'

cos -
a

re
, , cos-
ay 1 a

v = cosec-. j =
^ a ax a . ,x

sin -
__ a

. .j a; dy _ 1
" —

a' dx ^(cf — x*)'

_x dy 1

V = COS^-. 3s- = 77-j -jr
17 a dx >J(a —or)

_ + -i x dy _ a
*
~

a

'

dx a' + x*'

_ +-1 * ^y _ a
" —

a

"

da; a* + x*

'

_, x dy _ a
^ — a" da; xtjipf— d*)'

x dy a
^ =cosec

a- ^-~w(^-«>r
.,« dy 1

y = vers - . y- = 77s s •

* a dx V(2aa; - *

;

T. D. c. E
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1. y = C >Jx.

a-x
2

- y=-s~-

4 # = x log re.

v 5. y = log cotan x.

rr.

6. y =

7- y =

V(a
2 -a;2)'

LMP



EXAMPLES OF DIFFERENTIAL COEFFICIENTS. 51

e" — e* dj£ _ 4
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28. y =

29. y = e

dy _ - 2x (2 - xa

)

di~ (l-x*)i (l + x2
)*

x dy _ e
x (l— x) - 1

e'-f dx~ (e
r -l)a

"

(a; - 2) e
1 + x + 2

i {
(a; - 3) e

21 + 4xe"+ x+ 3}.

(e*-l)8

dy = £_
dx (e*-l)

30 lf -l 0f-
V(1+a:) + V(1 - a:) ^___J__

31. ^(x+VU-**)}*- g= n{x+V(l-^)r^=g^
32

- ^{i+vu-^F-
dy _ wy

dx x \/(l — «2

)

33. y =
V(l-af)ll + V(l-^)j

x
|
n

1 +W (1 - a?)dy

dx

x
I"

34. 3,=a
v(o,-**)

.

dy xy ,

-T- = —; log. a.
dx (a'-x8

)*
S

ok , i dy sec
2ax , 4o5. # = tana . -^-= -j— \ogca.a

x

_36. y = log{V(l+*') + V(l-V)}. g-i^-l-^

37. y =(2a* + x*)V(a* + ^). ft, **+f. .

dx 4Va;V(a* + xi
)

38. « = x + logcos(- — x). -y- = ~,
—

t-* 6
\i I dx 1 + tana;



39. y

40. y

41. y

42. y

4.3. y

44. y

45. y
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_V(l+ a;
8
) + V(l-^) <%=_£/,. _J I

J(l+ <0-^/(l-^)" dx «•
J

1 +
V(1 -**)]

= a; sin x.

= tan a; tan
-1

x.

• sin «x (sinx)"

dv . , _, tana:
-j2- = sec x tan x + rax 1 + x

dl-
dx
= n (sin a;)

n_1
sin (n+ 1 ) x.

(sin tjx)" 03/ _ mn (sin mx)"
1"1

cos (mx — nx)

(cos mx)"

'

dx (cos k)'*1

= e
-02*1 cos rx.

x — sin
_1
x

S'=_^ !-'YV'
ax

— e a"'r' (2a°x cosrx + r sin r#)

.

a>

(sin x)
3

sin x \ 1 77-—-sr-V — 3 (x — sin"'x)
I

V(l-x2

)j '

cosx

48. y = log

a+b tan
xl

', — b tan -

(sinx)
4

dy^
dx

ab

a2
cos

2 - — 6
2
sin

2 -
2 2

47.
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52
-

y=afX
- ^ =^{l + 1°sx+ (

los^j-

53. y = x*.
d/ = x^ 1 + xl°S x
dx x

54. ?/ = tan
'

5 . -/ = —-

—

'—-.J 1+x* dx \ + §x'+xl

_, x +

1

dy 1
00. 11 = Sill —- . ^ = —-

;; .J
-J-2 dx </(l-2x-x*)

56 w-tan H\-x\
dy - - ^

SeC ^(1 ~ XWob. .y-tan^l x).
dx

-
2J{1 _ x)

57 « - tan"'
* ^ - _L_5 /. ,, - tan ^

(i_^ .

dx
-

V(1 _^ •

58. v = tan" 1

(/itan a;). -V- =—

5

,... .

aa; cos a; 4- n. sin a;

"Q — -> _ a ^y _ i
.'/-sec

V(a,_^- ^"^(a'-a;3

)

60. 3/ = (a; + a) tan
-1

. / - — J{ax). -$ = taD
-1 -/- .

r., -.a; /a; — a\4 rfy 2aa^
61. y = tan -+log . -T-

=
-, i-3

a °\x + aJ dx x4 -al

62.
!/
= sin~'J(sinx).. -U = \ J(l + cosecx).

/»« _, 2x dy 2
Od. w = tan _

.

-J- = -.

.

3 l-a? dx \ + a?

G4. y = siu"
ax dy _ aft — cx1

)
1

b + cx2 ' dx ~ J{b*+ (26c- a2
) a;

!4 c
2^*}

' b+cJ*

66 »-*£5+*v(.--). 1-^-
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67. ^tan-^+VO-**)}. ^,/ff^) .

. _ x tan a rfy a* tan a
C8 - y = sin .//„»_

^

- ± = 1JZ^-

dy_ g#-o')
<&~ (V- a?) */{<?- a?)

\l(c? — a?)' dx a* — a?'n/(a*— x*sec'a)

69. y =sin-i

AyQIfjy

70. y-tsn- /fj=^.

. _. b + a cos x
71. v = sm r .

17 a + b cos a;

„ _i [<J(a
2 — b') sin a;)

72. y = tan 1 J—^— * > .J
{ o + a cos x )

x2"— 1
73. ^cos-^^.

-W(l +«*)-!
7o. y = tan — .

dy _
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. n + 1 . nx
sin——- x sin -—

2 2
78. Given sin a;+ sin 2a; + ... + sinrea; = >

.
«•

sin-

deduce, by taking the differential coefficients of both sides,

the sum of

cos x + 2 cos 2x + ... + n cos nx.

n+ 1 . x . 2n + 1 1
sin - sin—-— x

Result. -—-^———

—

1 / . n+1 N
2

. „ x
Sm

2

79. Having given (see Plane Trigonometry, Chap, xxm.)

. (it \ . /2tt \ . fm — 1 \ sin mx
sin a; sin 1- a; sin \- x) ... sin ( it + x )

— -^--r-\m ) \m 1 \ m / 2

where m is a positive integer, shew that

cot x + cot [ ha;] + ... +cot( it + x) = m cot ma;.
\m J \ m J

80. From the preceding result deduce that

cosec* x + cosec* [ 1- a;) + ... + cosec
3

( ir + x)
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CHAPTER V.

SUCCESSIVE DIFFERENTIATION.

77. In the preceding Chapters we have shewn how from

any given function of a variable another function may be

deduced, called the differential coefficient of the first. This

second function, by the same rules, has its differential co-

efficient, which is called the second differential coefficient of the

original function.

dtj
Thus, if y - xn

, we have -j£ = was"
-1

. The differential co-
dx

efficient of nxn
~l with respect to x is n (n — 1) x

v~*, which is

therefore the second differential coefficient of y or x" with

respect to x. The second differential coefficient of y with

d'y
respect to x is denoted by -r% , which is to be considered as

d-y-

an abbreviation for—j—

.

What we said of -y- in Art. 26, we now say of -^A,

that it is to be looked upon as a whole symbol, not admitting

of decomposition into a numerator d2

y and a denominator dx\

d"v
As -t4 ^1 De generally a function of x it will have its

CLX

differential coefficient with respect to x. This is called the

third differential coefficient of y with respect to x, and is

d
d.

denoted by -5-5 , as an abbreviation for —7—

This process and notation may be carried on to any extent.
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The successive differential coefficients of a function are

often conveniently denoted by accents on the function.

Thus, if
(f>

(x) be any function of x, then </>' (x),
<f>

'(x), <f>'"(x),

<f>

w
(x), denote the first, second, third, fourth,

differential coefficients of (f>(x) with respect to x.

78. In some cases the nlh differential coefficient of a
function admits of a simple algebraical expression. For
example, suppose

dx
therefore -i^ = cos a: = sin ( a; + — ),

d*>
=

dx =™{*+-
2 )

= sin (* + ?)'

d 3

y . I 3tt\

d"
and generally -j~ = sin Ix + — 1

.

: sin ax,

a sin I ax +— I

.

So also, if y = sin ax,

dy
dx"

In like manner, if

y = cos x,

d"y / rm\

^ =C0T + tJ ;

dq if y = cos ax, -~ = a cos ( ax +— I
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79. Suppose y = ax
;

therefore ^ = a* log a,

g = «*(loga)',

d n
v

and ^ = a* (log a)".

Similarly, if y = e**, -^ = aBeM.

If y = log x,

§1 = 1 =^
dx or

^ = -cr-

and

a'x
8

d'y |n- 1(-1)"

ax

dx" x"

where
|
w— 1 stands for 1 . 2.3 ... (n — I).

80. Differential coefficient of the product of two functions.

Suppose u — yz,

where y and z are functions of x ; we have

du _ dz djj

dx dx 'dx

Differentiating both sides of the equation with respect to

x, we have

d*u d i
z dy dz_ dy dz <Py

dx*~ dx* dxdx dx dx dx'

d*z dy dz (fy—
y dx" dx dx dx3
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Similarly

d 3a_ d s
z dy d?z dy d?z d?y dz d'y dz <Fy

dx3 y da? dx dx* dx dx' dx* dx dx* dx dx3

_ d?z dy d?z d?y dz d 3

y
~ *t dx" dx dj? da? dx dx3 *"

So far, then, as we have proceeded, the numerical coeffi-

cients follow the same law as those of the Binomial Theorem.
We may prove by the method of Induction that such will

always be the case. For assume

dTu_ dTz dydP^z n (n - 1) d*y d"^z

dx"~y dx"
+ n

dxdx^1+ 1.2 d?d?^ + '"

u(n-l)...(n-r+ l) dr

y d
n
~"z

[r dxr daTr

,
n(n-l)...(n-r) <T"y<rrtg dTy

\r_+l dx™ dx"-*-
1 + •• +

dx"
•-•'' >

Differentiate both sides with respect to x : then

d"
+iu _ d"+1

z dydTz dydTz dTy d'^z

dxn+l
~y dx"

+1+
dx dtf

+ n
dxdx"'

r n
~dx> dxT1 + ""

n (w-1) ...
(
H -r + l) (d[y dT^z dT\j d"-'z

+
\r_ \dxr

dx"-"1 + dx™ dx"^

n(ro-l) ... (n-r) \d™y d!"z d™y d'^z

|r + l [dx™ dx"^
+ dx™ dx"^\

dTy dz d"
n
y . .

+ + dx"dx
+
dx"

+lZ (2) -

Rearranging the terms, we have

dn+1u d^z . ,.dyd"z

d^ = ydx^
+{n + 1)

dxdx-"
+ -

(n + l)n ... (ra + l-r) d™y d!"z
+

|r+l dx™ dx"-*

+ dx^lZ ®-
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Now the series (3) follows the same law as (1). Hence
if for any value of n the formula in (1) is true, it is true

also for the next greater value of n. But we have proved
that it holds when n = 3 ; therefore it holds when n = 4,

therefore when n=5, and so on ; that is, it is universally true.

This theorem is called after the name of its discoverer,

Leibnitz.

81. If m = e"* cos bx ; we have by Arts. 78 and 80,

^= e-[a"cosJx+WJa"-1cos(^+j)+'^-) a-s
J
8
cos(6a;+^)

+ + b' cos fbx+^\.

We may also find another form for this n'" differential

coefficient as follows:

-j- = e"* (a cos bx—b sin bx)
;

assume a = r cos
'<f>,

b = r sin
<f>,

so that r =(a? + b*)K

thus j- = re" cos (bx+
<f>),

where r and <j> are constant quantities.

Similarly^ = re"* {a cos {bx +<f>)
— b sin (for + <j>)}

= r'e " cos (Jar + 2<f>),

and generally

dV* cos bx . „ .,

-t-„ = rV* cos (for + w<£).

82. The following is an important example of Art. 80.

Let u = d"y

;

d"eax
then, remembering that -5-5-= aV*, we have

d"U ax { n , n-l^y ,
W (w - 1) „,tf« ^V
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If now the expression

be expanded by the Binomial Theorem, and the symbols

(£)* (s)* (s)*~
replaced by

£' d?>
^.-respectively,

the result will be the same as the series in parentheses in (1).

Hence, we may write

^-K)V «.

as a convenient abbreviated method of stating the equation (1).

83. The following theorem is sometimes of use in the

higher branches of mathematics.

If n be any positive integer

d?u _ dTuv
n d"'

1

(^ dv\ ^ n (w-1) dT
dx" dx"

d" I dv\ n(w-l) d"""
1
/ d*v\

nj^\u
Tx)+ -T7^1x^{u d^)

-h-^S <*>•

This theorem may be readily established by Induction.

For it is obviously true when n = 1, and if we assume it to

be true for a specific value of n we can shew that it will be
true when n is changed into n+ 1. Assume that (1) is true

and differentiate both sides ; thus

dn+1u dvdTu_ dTx
uv _ d*_ ( dv\ w(n-l) d"~

l
I d*v

V
dx"n + dxdx"~ dx™ n

dx»\
W
dx)

+ " 1 . 2 dxnA U
d?.

+<-»!(•£) «
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Also since the theorem is supposed to hold for the value n

we have from (1), by changing v into -r-

,

dvdTu_d^( dv\_ dr^_ / d?v\ n(n-l) dT* I rf"iA

dx dx»~ <&[" dx)
n
daf'V dx1

)
+

1.2 daT'Vdx3
)

~ + C-i)'«S=£ (8).
dor

Now suppose the right-hand members of (2) and (3) written

so that the first term of (3) is immediately under the second

term of (2), the second term of (3) under the third term of (2),

and so on. Then by subtracting we have

dn+iu d"
+,u» . ,. dT ( dv\ (n+l)n d"-

1
I d*v\

"<^ = d^-(n+1) d^{u Tx)
+-ord^\u

dj)

- -K-ir^
dx"

n '

This shews that if the theorem is true for a specific value

of n it is also true when n is changed into n + 1. Therefore

since it is true when n — 1 it is universally true.

EXAMPLES.

cPy cos x
1. If y = tan x + sec x, -j-j = 7T-

—
: ^ •

9 dx (1 — sin x)

. , 3sina; — sin 3a;
2. Let y = sin a;= ,

dTv 3 . / mr\ 3"
. /., ,

mr\
then aJ-i-n^ +Tj-J^^+j)-

d3
y 12

3. I{y = a^\ogx, -£= -.

d'y 13
4. If^z'logz, j x̂

.

i x <Py 4a3

5. If *,= (*'+ <) tan-, ^= (aST^y-
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6. If y = e*cosx, ^ + 4y = 0.

3a'// cc' \ d*y _

8. Tiy={w + W-1)\', (^- 1)^+ a:£-^= -

d"ii \n—l

11. If«„ = (e*+ e-T, ^ = A.-4B ((i -l)u„.

t n Tt 1 a d*y 2 V^ — 1 2 tt
12. Hjr-**, ^-^-^.
i<2 Tf

^ <^V 24

14. Ify* = sec2x, y +^4=3y.

ifi Tf _ aa; + & d"y

_

(— 1)"\^ ( b + ac b-ac )

y ~a;*-c" dxn ~ 2c [(x-c)"-1
(as + c)""!'

17. If y = xn sin x,

18. If 2 = tan"
1 -,

a a

then j^ = -=^—.= cos
8 "

,

da; a +x a
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hence _J£ = __ cos^sin ^-^
ax a a a ax

1 . 2ydy=— sin— -=*

a a ax

= - cos [
— + ~] cos" - .

a \a 2/ a

Shew that -=-^ = -. cos f-^ + 2 . ^ J
cos

8 ^

,

dx' a* \a 2 J a'

and generally that -^ = '

„_, cos ^ + (w - 1) -

JNow tan - = - — tan - = - - suppose
;

thus cos j— + (» — 1) ^j- = sin (— + ^J = sin [mr — nd)

= (-l)-1 sinw0; and cos
n ^ = —-;
°

(a* + xf
d"v I n — 1

therefore ^ =a (- l)""
1-J=_ sinntf.

(a* + xy
19. Since

dtan"1 -
j. , •, v , (THan"1 ^a _ a d / 1 \ _ 1 \a

<fc ~ os + x2
' S[7+?/"o ZT^

Hence, shew that

a (<r + x) *

where tan = - .

T. D. c.
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The n01 differential coefficient of -5 = with respect to x
a2 + x2 r

is sometimes obtained thus

:

1 1 ( 1

«V(-i)J
;

£_ ( i \ = (-iris, r 1 1 1

(&[(?+ a?) 2oV(-l)L{*-°V(-l)}"*1 {«+aV(-l)r l

J'

a" + 3^ 2a V(- 1) \x — a^(—l) x +

therefore

Now assume a; = r cos 8, a = r sin 0, so that

r
2 = a* + ar* and tan 8 = -

.

x

Then {x + aVi-l)}"*
1 = r

nn
{cos 8 + J{-l) sin 0}"*1

= r"*
1
{cos (re + 1) 8 + V(- 1) sin (n + 1) 0j

by De Moivre's Theorem.

Hence

1 1 _ 2V(-1) sin(w+l)fl

(x-»v(-i)r {*+o V'(-i)r" rn+i ;

and we . obtain the same result as before for the proposed 71
th

differential coefficient.

on a
2 + 0^ Va +a^/

, V« +^/ A _* on2°- TE^"* cfaf
+n

dx~ • ^^
Hence, by means of the preceding Example, shew that

d^
f

x \ (-l)'lB.cos(n+l)g

dx"W + xV~ /,. «T
(a + ar)

We may also proceed in the second manner indicated for

the preceding Example, starting with

x _ 1
[

1 1

di + xi ~2\x + a V(- 1)
+
x-aV(-l).'"
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1 -1
21. Find the 4th

differential coefficient of -=—- and ofe i".
& — \

Results

% t and e-ZlUx-v-lUx-^+ZOOx-'-UOx-6

}.
(e — 1)

22. ^^P = {*V + 2nxc"-' + n (n - 1) c"'
2
} a

x
,

where c = loga. Art. 80.

23. If y = sin (m sin
-1

#), shew that

Apply Leibnitz's theorem, Art. 80, and deduce

24. If y = a cos (log a;) + b sin (log x), shew that

d*y dy
X

dx"
+ X

dx
+ y °' —

and that a:'^ +(27!+ l)zJS+ («'+
1)g = 0.

F2
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4.

CHAPTER VL

EXPANSION OF FUNCTIONS IN SERIES.

84. In the Binomial Theorem, we are furnished with a
series proceeding according to powers of h, which is equi-

valent to the expression (x + h)\ Other series have also

presented themselves in Algebra and Trigonometry, such as

the expansion of e" in powers of x and of log (1 + x) in powers
of x. In the previous Articles of this book, we have, however,
not assumed the knowledge of any expansions, except the Bi-

nomial Theorem in the case of a positive integral exponent ; but
we are now about to investigate the expansion of f(x+h)
in powers of h, where f(x) denotes any function of x, and it

will appear that all the isolated examples which the student

may have seen hitherto, are but cases of this general theorem.

85. Before we offer a strict demonstration of the theorem
in question, we shall notice the method which it was usual to

adopt in treatises on the Differential Calculus not based on
the doctrine of limits. Such treatises commenced with an
unsatisfactory demonstration of the proposition that fix + h)

could generally be expanded in a series proceeding according

to ascending integral positive powers of h ; it remained then

to determine the coefficients of the different powers of h, and
that was accomplished in the manner given in the next two
Articles.

86. We have first to establish the following theorem
l£f(x+ h) be any function of x+ h, we obtain the same
result whether we differentiate it with respect to x, consider-

ing h constant, or differentiate it with respect to h, consider-

ing x constant.
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For put X+ h = Z.

In the first case

df{x + h) _ df(z) cb

dx dz ' dx

-/(.), since ^=1.

In the second case,

df{x + h) _ df(z) dz

dh dz ' dh

=f(z), since
Th

=l.

87. To expand f(x + h) in a series of ascending powers

of h.

Assume (Art. 85) that

f(x + h) = A
t
+A

t
h + AJii+ AJi'+ (1),

where A
l)

, A
x

, Av ..., do not contain h.

Then

^^ = dA t + h
dA1+ht dA1+hS dA3+

dx dx dx dx dx

and
df(X

d
* h) =A

l
+ 2A

i
h + 3AJf+ (3).

By Art. 86, the series (2) and (3) must he equal. Hence,
equating the coefficients of like powers of h, we have

^~ dx '

A - l dA
l - l JM"

A„—

;

s 2 dx 1.2 dx*
'

A =1—'- l ^A
<>

a_ 3 dx "1.2.3 dx*
'

And by putting h = in (1), we find
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Hence, substituting the values of A , A lt ...
in (1), we have

f(x + h)=f(x) + hf'(x) + ^r(x) + ^_f"(x) + ...(i),

the general term being

h" d'f{x)

\n dx"
'

This result is called Taylor's Theorem.

88. There are numerous objections to the method of the

preceding Articles, and especially the use of an infinite series,

without ascertaining that it is convergent, is inadmissible ; we
proceed then to a rigorous investigation.

89. Let y = F(x), and suppose Ax and Ay to represent

the simultaneous increments of x and y; then the fraction

Aw
-j~ , since it has for its limit the differential coefficient F' (x),

will ultimately when Ax is taken small enough have the same
sign as this limit, and therefore will be positive if the dif-

ferential coefficient be positive, and negative if the differential

coefficient be negative. In the former case, the quantities

Ay and Ax being of the same sign, the function y will increase

or diminish according as x increases or diminishes. In the

latter case, Ay and Ax being of contrary signs, y will increase

if x diminishes and will diminish if x increases.

The above supposes that there really is a finite limit to

which -;r- tends ; in other words we assume that F' (x) is not
Ax v '

infinite. The limitation that the functions with which we are

concerned are not to become infinite is one which ought to be
understood in most theorems in mathematics, even if it is not

formally enunciated. In the present subject however it is

usual to state this limitation expressly at the more important

stages of the investigations.

It may be observed that we may sometimes obtain useful

information respecting the sign of a function by examining
the differential coefficient of the function. For example,

suppose y = (x — 1) e" + 1, then -j- = xe" ; as ~- is positive



tatlob's theorem. 71

for all positive values of x, it follows by the present Article

that y is always increasing so long as re is positive ; but

y = when x = ; therefore y is positive for ali positive values

of x.

Similarly we can shew that x — log (1 + x) is positive for

all positive values of x.

90. A function of a variable is said to be continuous be-
tween certain values of the variable when it fulfils the follow-

ing conditions: the function must have a single finite value
for every value of the variable, and the function must change
gradually as the variable passes from one value to the other,

so that corresponding to an indefinitely small change in the
variable there must be an indefinitely small change in the
function.

91. Suppose <f>(x) a function which vanishes when x = a
and when x = b, and is continuous between those values.

Suppose also that
<f>

(x) is continuous between those values.

Then </>' (x) will vanish for some value of x between a and b.

For
<f>

(x) cannot be always positive between those values,

for then <£ (x) would be constantly increasing as the variable

increased from the lower value to the higher (Art. 89), which

is inconsistent with the supposition that
<f>

(x) vanishes at the

two specified values. Similarly
<f>'

(x) cannot be always nega-

tive. Hence </>' (x) must change from positive to negative or

from negative to positive between the assigned values ; and
since it is continuous it cannot become infinite and- must
therefore pass through the value zero.

If a denote some constant quantity, such expressions as

f (a),f" (a), ... may occur in our investigations, the meaning
to be attached to them being that/(x) is to be differentiated

once, twice, ... with respect to x, and in the result x changed

into a.

We can now demonstrate Taylor's Theorem. The proof

which we give in the next Article is due to Mr Homersham
Cox; it was published by him in the 6th volume of the

Cambridge and Dublin Mathematical Journal, and subse-

quently in his Manual of the Differential Calculus.
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92. Suppose/ (a + x) and its differential coefficients up to

the (n+ l)"1 to be continuous between the values and h of

the variable x. The expression

f(a + z)-f(a)-xf(a)-^r(a)...-^r(a)-
X
—...(l),

vanishes when x = h if R =

i={/(«+^)-/(«)-¥'(«)-^/"(«)--^/"(«)}-(2)-

Suppose J? to have this value which we observe is inde-

pendent of x.

The expression (1) also vanishes when x= 0.

Hence, by Art. 91 the differential coefficient of (1) with

respect to x must vanish for some value of x between and h

;

suppose x
1
that value, then

f {a + x)-f{d) - xf"(a)-...-^lr {a)-^
n
R (3),

vanishes when x= x
t

. But (3) also vanishes when x=0;
hence there is some value of x between and x

l
for which

the differential coefficient of (3) vanishes.

Continuing this process to n + 1 differentiations of (1) we
find that f

n+l
(a + x) — R is zero for some value of x between

and h ; let this value of x be 6h, where is some proper

fraction, therefore

R=f*l
(a + eh).

Substitute this value of R in (2) and we have

We may now put a; for a in this equation, since there has
been no restriction in the value of a, except that all the quan-
tities are to be finite, thus we obtain
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f(x + h) =f(x) + hf(x)+*g"(x) + ... +^/"(x)

]^rir ,

(»+g*)...w.

If the function

/

n+1
(a;+0A) be such that by making n suffi-

ciently great the term 7/"+1
(
x + #A) can be made as small

as we please, then by carrying on the series

f(x)+hf(x) +£/"(*) +|/'» + •••>

to as many terms as we please, we obtain a result differing as

little as we please from /(x + h) . Under these circumstances
then we may assert the truth of Taylor's Theorem.

93. Taylor's Theorem is so called from its discoverei

Dr Brook Taylor; it was first published in 1715. The
theorem contained in equation (4) of Art. 92 is called

Lagrange's Theorem on the limits of Taylor's Theorem. It

gives us an expression for the difference between f(x + h)

and the first n + 1 terms of its expansion by Taylor's Theorem,
or as it is called " the remainder after n + 1 terms."

94. To the expression/"*1

(x + 6h) which occurs in Art. 92,

we must assign the following meaning. " Let / (x) be dif-

ferentiated n + 1 times with respect to x, and in the final

result change x into x + 8h." We do not know anything of

6, except that it lies between and 1 ; it will generally be
a function of x and h, and hence, to differentiate f(x + Oh)

with respect to x, is not the same thing as to differentiate

f(x) with respect to x and then to change x into x + 8h.

95. Maclauriris Theorem.

In the equation

f(x^h)=f(x) + hf(x)+^f"(x) + ... + W^-
Itl+l

+
lE±j

/b+1(* +<%) '

put x = 0, we have then

fih) =/(o> + a/'(o) + ... +
ĥ M

+
^jf"+l

(eh).
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We may, if we please, change h into x, and since the

quantities /(0), /' (0), /*(0), do not contains or h, no

change is made in any of them : hence

/(a;)=/(o) + x/'(o) +...+^»+^/"+1
(^).

When the last term, by taking n large enough, can be

made as small as we please, we have for f(x) an infinite series

proceeding according to powers of x. This series is usually

called Maclaurin's, having been published by him in 1742;

though, as it had been given a few years previously by Stir-

ling, it sometimes bears the name of the latter.

96. Assuming that any function of x can be expanded in

a series of positive integral powers of x, the following method
has been given for proving Maclaurin's Theorem.

Let f{x)=A + A
l
x +A

a
x* + + Anx

n +
where A , Av Av ... do not contain x.

Differentiate successively, then

f'(x) = A 1
+ 2A

2
x+.... + nA nx"'

1 +

f"(x) = 2A
i
+ 2.3A

e
x+.... + n(n-l)A„x"-!! +

f'"(x) = 2.3J
3
+ .... + n (n- 1) (n - 2) A„xn^+

Now suppose x= in each of these equations, we have

A=/(0),

A=J^/"(0),

Substitute the values of A^, A
lt

... and we obtain

/(*) =/(0) + xf (0) + j|/" (0) + ....
+ 1/- (0) + .
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97. The demonstration given of equation (4) in Art. 92,

which equation involves Taylor's Theorem, and may even

speaking loosely be called Taylor's Theorem, will probably

disappoint the reader. Though he may be unable to discover

any flaw in the reasoning, he will complain of the artificial

and tentative character of the whole, and he will urge the

same objection with respect to Cauchy's method of proof

which we shall presently give. Without denying the justice

of these objections, we may reply that the highly general

character of the theorem may be some excuse for the com-
plexity and indirect nature of the investigation. But with

respect particularly to the dissatisfaction felt in being com-
pelled to assent to a number of propositions without knowing
beforehand the general course which the demonstration might
be expected to take, we may remind the student that he must
not while engaged in the elements of a subject expect to be
able, as it were, to rediscover the theorems for himself. Instead

of asking, "what suggested this or that step?" he must
frequently be contented with the simpler question, " is the

reasoning correct ?" To this of course he has already, perhaps
unconsciously, been accustomed ; for example, if a complicated

construction occurred in Euclid, he merely confined himself, at

least for some time, to an examination of the consistency of

the construction, and the truth of the deductions from it,

without attempting to retrace the steps by which Euclid

arrived at his construction.

98. On account of the importance of Taylor's Theorem
we shall add another demonstration ; this demonstration is

due in substance to Cauchy.

Let F(x) and f(x) be two functions of x which remain
continuous, as also their differential coefficients, between the

values a and a + h of the variable x. Suppose also that be-

tween these same values the derived function/' (x) does not

vanish. Then the fraction -—
j{ ~\ shall be equal

f(a+h)-f(a)
**

F'{x)
to the value of .,) { , when in the latter x has some value

/ W .

included between the specified values; that is, 6 denoting

some proper fraction, we shall have
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F(a+h)- F(a) _ F' (a+ 6h)

f(a + h)-f(a) f'(a+0h)-

T.f
F(a + h)-F(a)

.

then since /' (x) is continuous and does not vanish between

the values a and a + h of x, it retains the same sign ; and
thus/(x) continually increases or continually decreases: see

Art. 89. Hence /(a + h) —/(a) cannot be zero, and we may
therefore multiply by it ; so that

F(a + h) - F(a) - R {/(a + h) -f{a)) = 0.

Let ij> (x) denote the function

F(a + h) -F{x) - R {/(a + h) -/(*)}

:

then
<f>

(x) is continuous while x lies between a and a + h
;

and so also is the differential coefficient <f>'(x), that is

— F(x) + Rf'(x). Moreover
<f>

(x) vanishes, by hypothesis,

when x = a; and <j> (x) obviously vanishes when x = a+h.
Hence, by Art. 91, it follows that

<f>
ix) must vanish for some

value of x between a and a + h ; this value may be denoted
by a+ 6h, where 6 is some proper fraction. Thus

-F {a + eh) +Rf (a + eh) = ;

and, by hypothesis, f (a + 6h) is not zero, so that we may
divide by it : therefore

F'(a+eh)

f\a + eh)-

Thus the required result is obtained.

99. The result of the preceding Article has been obtained
on the assumption that the functions are continuous and that

f (x) does not vanish between the values a and a + h of the
variable x. The result however is true if the functions are

continuous and either of the two F° (x) and f'(x) does not
vanish. For if F' (x) does not vanish we may prove as in

the preceding Article that

f(a+h)-f(a) __ f'(a + 8h)

F(a + h)-F(a) F'{a + 0h)'
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and from this it follows of course that

F(a+h)-F(a) _ F'(a+M)

f(a + h)~f(a) f'(a + eh)-

The reader who wishes to see the application of this

result to the establishment of Taylor's Theorem, may pass

on to Art. 106 at once, and then return to the consideration

of the omitted Articles, in which we shall give another proof

of the result, and also some geometrical illustrations.

100. The enunciation of Art. 98 being supposed, we may
arrange the proof thus

:

Divide h into a number of equal parts, and let a denote

one of these parts. Consider the fractions

F(a+a)-F(a) F(a + 2aC)-F(a + a) F(a+ Sa)-F(a+ 2a)

f{a+a)-f{a)' f(a+ 2a)-/(a+a) * /(a + 3a)-/(a+ 2a)
'

F{a+h)-F(a + h-a)
- /(a + A)-/(a + A-a) l J

'

Form a new fraction by adding together all the nume-
rators in (1) for a new numerator, and all the denominators

in (1) for a new denominator. We thus obtain

F(a+h)-F(a)
f{a + h)-f(a)

' W "

Since the denominators which occur in (1) have by hypo-

thesis all the same sign, we know from algebra that the

fraction (2) lies in value between the greatest and least of
those in (1). Now

F{a -f a) - F(a)

F(a+a.)-F(a) %

f(a + a) _/ (a) /(a + q)-/(a) '

a

W (n\

if then we put this fraction equal to .,. . + B, we know
/ W

that 8 diminishes without limit when a does so.

Similarly,

F{a+2i)-F(a + a) = F'{a + a
)

f(a+2a)-f(a+ a
)

/'(a + a)
+7'
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F(a+3a)-F(a+2a) = F'(a + 2a)
g

f\a + 3a) -/{a + 2a) ~ /' (a + 2a)
+

'

F(a + h)-F{a + h-a) _F

(

a + h-a
)

/(o + A)-/(a+A-a) f~(a + h-a) +f*

where y, 8, ... fi, all diminish without limit when a does so.

Since the fraction in (2) always lies between the greatest

and least of the series

/» +ft /'(a + a)
+ % /' (a + 2a)

+ *'

F\a+A-a)
f\a+h-a) +*

it must Ue between the greatest and least limits towards
which these tend; that is, it must Ue between the greatest and

F'(x)
least values which ., ;

' can assume between a and a + h.

f W
F (x) . .

But as ., '
, in passing from its greatest to its least value

/ \x)

passes through all intermediate values, there must be some
proper fraction 6, such that

F(a + h)-F{a) ^_ F' (a + 8h
)

f{a+h)-/(a) ~ f(a + 6h)-

101. Suppose f(x) =x — a; therefore f {x) = 1.

The conditions required to be satisfied by fix) in the
enunciation of Art. 98 are satisfied. And asf(a + h)=k,
and f (a) = 0,

we have F(a + h) - F(a) = TiF' (a + 6h).

This simple case of Art. 98 might of course be proved in
the same manner as the general proposition was established.

102. The result of Art. 101 may be applied to shew
that an expression independent of a; is the only one of which
the differential coefficient with respect to a; is always zero.

For suppose F{x) a function, such that F' (x) is always zero
;
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then, from the last equation in Art. 101 it follows, whatever
be the value of a and a + h, that F(a+h) — F(a) = 0,

therefore F(a + h)=F(p).

Hence the function F(x) has always the same value whatever
be tbe value of the variable; that is, it is constant with
respect to x, or in other words does not depend on x.

From this it follows, that two functions which have the
same differential coefficient with respect to any variable can
only differ by a constant. For the differential coefficient

of the difference of these functions being always zero, it

follows from what we have just proved that this difference

is a constant.

103. The result of Art. 101 admits of the following simple
geometrical verification.

We have already shewn, Art. 43, that if u represent the
area contained between the
axes of x and y, the ordi-

nate y, and any curve, then

du

Tx=y-

Let u= F(x), and therefore

y = F\x) is the equation to the curve; let 021= a, MN=h;

y
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104. The following is another geometrical illustration of

Art. 101.

If y = F{x) be the equation to a curve, then F' (x) is the

trigonometrical tangent of the

angle between the axis of a; j

and tbe tangent to the curve

at the point (x, y). See Art. 38.

Let OM= a, MN= h,

then
F{a + h)-F(a)

h

is the tangent of the inclination of the chord PQ to the axis

of x. Hence Art. 101 amounts to asserting that at some
point B between P and Q the tangent RT to the curve is

parallel to PQ.
We call this an illustration. When, however, the student

has sufficiently considered the nature of the tangent to a
curve, it may amount to a proof of the proposition in

question.

105. The following is an illustration of the general pro-
position in Art. 98.

Let there be two curves APQ and apq. Let F(x) denote
the area contained between
the first curve, the axes of x
and y, and an ordinate to

the abscissa x; then y=F'(x)
is the equation to this curve.

Let f(x) denote a similar area

with respect to the second
curve ; then y =f (x) is the
equation to this curve.

Let OM=a, MN=h.
Then F(a+h)-F(a)= area PMNQ,

f (a + h) — f (a) = areapMNq.

Hence the equation

F {a+ h)-F (a) F(a + 0h)

f(a+h)-f(a) f(a + $h)
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amounts to the assertion that there must exist some point R
between P and Q, such that

area PMNQ _ EL
areapMNq rL

'

106. Suppose now that F{x) and f(x) and all their dif-

ferential coefficients up to the (n+ l)
th inclusive, are con-

tinuous between the values a and a + h of the variable x
;

moreover suppose that one of the two F'(x) and /' (x) does

not vanish between the same values, also one of the two
F" {x) and /" (as), and so on up to Fn+

' (x) and f
n+1

{x).

Then, by Art. 99,

F(a + h)- F(a) _ F'{a + 6
t
h)

/(a + *)-/(«) -fia+OJi)'
F' (a + 6Ji) - F' (a) _ F" (a + 0Ji)

/'(a + 0,A)-/'(a) f"(a + 6,h)'

F"(a + e
2
h)-F"(a) _ F"' (a,+

6

%h)

f"(a+ea
h)-f"{a) f"(a + 6Ji)'

F"(a + enh) - Fn
(a) _ Fn+1

(a + Oh)

f"(a + enh)-f(a) f^(a+6h)'
where 6V 6

t , a , 6, are all proper fractions.

Let us now suppose that F'(x), F" (x), ... Fn
(x), f {£),

f"' (x), ...f(x) all vanish when x = a; then from the above

aquations

F (a + h) - F(a) i^+1
(c + 6h)

/(a + A)-/(a) -/"(a+Bh) '

107. If we take f(x) = (x — a)"
+1 we find that the requi-

site conditions are all satisfied ; that is, f(x) and its diffe-

rential coefficients ate continuous, and the differential coeffi-

;ients do not vanish between the values a and a + h of the

variable; also all the differential coefficients up to the 71
th

nclusive vanish when x = a. And

/"(*) =|n + l, /(o)=0, f(a + h) = h"
+
\

Suppose then that F(x) and all its differential coefficients

ixe continuous between the values a and a + h of the varia-

T. D. C. G
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ble, and that all the differential coefficients up to the n,Jl in-

clusive vanish when x = a; we have by Art. 106,

F(a + A)-.F(q)=
]
jgI

J»»(a + flA).

Suppose a = and F(a)=0, then

108. Application to Taylors Theorem.

Let
<f>

(x+ h) be a function which is to be expanded in

a series of ascending positive integral powers of h. Let

* (x+ h) -
<f>

(x) - h# (x) - *' f (*) _ . . . _^-V (*) = F{h).

Then F(h) and its differential coefficients with respect to k,

up to the 71
th

inclusive, vanish when h = 0. Also

J""* (A) = </>*
+1

(x + h).

Hence, by the last equation of Art. 107,

7n+l ln+l

and therefore

+ {x + h) = * (X) + h$ (X) +^ *" (X) +-.+ KV (X)

From this Taylor's Theorem follows whenever the func-

tion is such that, by sufficiently increasing n, the term

can be made as small as we please.
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109. The following proof of Taylor's Theorem deserves
notice, as it depends only on the equation which is proved
geometrically in Art. 103. Let

<t>(z) -*(*)- [z-x)$ (x) -^^ f ' (x) - ... - (^-">• (x)

be called F{x), then F' (x) = -
^~ x^

<],"
+i

(x).
\_n

Now, by Art. 103, F{x) = F(z) + {x- z) F'{z + 9{x- z)\.

Also F(z)=0,

and F {z + dix-z)}^-
6"^^ 4?»{z + e(x-z)};

therefore
<f>

(z) -
<f>

(x) ~{z-x) </>' {x) -
^~^'

<£" (a) -
Li

Put h for ^ — x, then

(a + A) = <£ (*) +Af (a;) +|f (») + + j£*"(«)

110. The result of the preceding Article gives us an
expression for the remainder after n+ 1 terms of the expansion
of <£ (x+ h), differing in form from that we found before. If

we assume 6 = 1 — V the remainder becomes

(1—0 rAn+1

111. In the proofs given of Taylor's Theorem, we have
supposed all the functions that occur to be continuous. If

the function we wish to expand, or any of its differential

coefficients up to the (?i + l)
th inclusive, be infinite for values

G2
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of the variable lying between certain values, the demonstration

given of the theorem

f(x+A)=Ax)+hf(x) + +|^A*) + j^T/"
+,
(*+^).

is no longer valid. It is usual to speak of the cases where an
infinite value enters as "instances of the failure of Taylor's

Theorem." The phrase is connected with the imperfect mode
of demonstration given in Arts. 86 and 87, in which it was
not settled beforehand when the theorem supposed to be

demonstrated was really true and when it was not. For ex-

ample, suppose

f(x) = J(x-a),

so that f(x + h) = <J(x — a + h).

Then it would be said that/(« + h) can always be expanded
in a series of whole positive powers of h, except when x — a.

When x = a, f (x), f"{x), ... all become infinite, and

f(x + h) becomes >Jh.

112. It was usual in that system of treating the Differen-

tial Calculus referred to in Art. 85, to express, or imply,

two propositions with respect to the "failure of Taylor's

Theorem."

(1) If the true expansion of f(a + h) in powers of h

contain only integral positive powers of h, then none of the

quantities /(a),/' (a),f"(a), ... can be infinite.

(2) If the true expansion of f(a + h) in powers of h
involve negative or fractional powers of h, then some one of

tlie quantities f{a), f (a), /" (a), ... is infinite, as well as

all which succeed it.

By the true expansion of f(a + h) is meant the expansion

obtained by some legitimate algebraical process, applicable to

the example in question, as the Binomial Theorem for example.

The proof of the above two propositions was given thus.

Suppose f(a + h) =A
a+Al

ha+ AJi/> + Aa
hv+

to be. the true expansion, -4„, A„ ..., not containing h. Then
to obtain /'(a), f" (a), ... we may differentiate /(a + A)

successively with respect to h, and put h = in the result.
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If then a, /3, 7, be all positive integers, we shall never

have negative powers of h introduced by successive differen-

tiation of f(a + h). Hence, by putting h = 0, we introduce

no infinite values.

But if any one of the exponents a, /S, 7, ... be negative,

f(a + h) and all its differential coefficients contain negative

powers of h, and therefore/(a), f (a), f" (a), ... are all infinite.

If none of the exponents be negative, but one or more of

them be positive fractions, suppose that 7 is the smallest of

such fractions, and that it lies between the integers n and
n + 1. Then f(a + h) and all its differential coefficients up to

the ntb inclusive are free from negative powers of h; but

f+1
(a + h) and all the subsequent differential coefficients con-

tain negative powers of h. Hence f"
+1

(a) is the first differen-

tial coefficient that becomes infinite, and all the following

differential coefficients are infinite.

113. It will be of use hereafter to remark that if for a finite

value of the variable any function becomes infinite, so also

does the differential coefficient of the function. In proof of

this, it is sufficient to notice the different cases that may arise.

An Algebraical function can only become infinite, for a finite

value of the variable, by having the form of a fraction the
denominator of which vanishes. Now when we differentiate

a fraction we never remove the denominator, so that the
differential coefficient also has a vanishing denominator, and
therefore becomes infinite. Similarly, the second, third, ...

differential coefficients are also infinite.
1

The transcendental functions logo; and a", which both
become infinite when x=0, have their differential coefficients,

namely - and °
a
- a", also infinite when x = 0.

The trigonometrical functions, such as tana; and sec a;,

which can become infinite, are fractional forms, and fall under
the observations already made.

The proposition is not necessarily true for functions which

become infinite for an infinite value of the variable, as may be

seen in the case of log x, which is infinite when x is infinite.

while its differential coefficient - vanishes.
x
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MISCELLANEOUS EXAMPLES.

, lr -id + bx dy 1
1. li y = tan = , -f-

= j.a b-ax dx 1+x1

2. If y = xtan '-. -
7
- = tan '

s.J
a; da; a; 1+ar

y & J(x
i + ai)-*/(x' + V)'

dy _ 2x

di~ V^ +aV^ + ^T

Tf _^(l-^) eSin
"
lc dy__x^l V(l-a^)-a!

s

A- t/- /sinx^11 " dy « (a; cos a; — sin x) . ex
^io. Ifw= , -£=*-!! .- ^log-.—J

\ a: / ax smx ° sini

6. If/(x) =g-±|p)/ (0) = {2log| +

sin a:

a 6
s —

a

2
) /a

a+>

ai J V6

8. If x = a cos + 6 sin 0, and y = a sin — b cos 0, then

dTx d"y d"xdmy . . , , ...

9. If cos"
1

1 = log Q". then

10. Shew that (x— 2) e"+ x + 2 is positive for all positive

values of x.
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CHAPTER VH.

EXAMPLES OF EXPANSION OF FUNCTIONS.

114. We shall first apply the formulae of the preceding
Chapter to expand certain functions.

Required the expansion of (1 + x)
m

, m not heing assumed
to be a positive integer.

if f{x) = (i+xr,

we have /' (x) = m (1 + x)
m~\

f"(x)=m(m-l)(l + x)^,

f
n
(x) = m(m-\) ... (m-n+ 1) (1 + x)'"-^

f+l
(x) = m (m - 1) . . . (to - n) (1 + x)^'1

;

hence /(0) = 1, /' (0) = m, f" (0) = m (m - 1), ...

Therefore, by Art. 95,

+
(TTTi » (™ - 1) •(•»-») U + &0"-1

.

If x be less than 1 the last term can be made as small as

we please by sufficiently increasing n, and in that case the

infinite series

to (m — 1) ,l+mx+—\ ' x*+...
Lf

can, by taking a sufficient number of terms, be brought as

near as we please to (1 -+- x)
m

.
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115. Let f(x) = a'.

By Arts. 95 and 79, we have

x2 x"
ax = 1 + x log a + — (log of + . . . + .-- (log a)

u

xn+1
a°*(loga)

n+1

+
\
n+ 1

Hence, changing a to e, and remembering that log e = 1,

x2
a;

3
a;" a;

n-V*

|_2 |_3_ \n_ \n + \

xn+1
eex

The term -, may be made as small as we please by

sufficiently increasing n. Hence we obtain an infinite series

for e
1
, namely,

e
*=1+x+ _ + _ + ...

Put x — 1, and we have

This series may be used for calculating the approximate
value of e, and we may shew from it that e must be an in-

commensurable number. See Plane Trigonometry, Chap. X.

It is found that e = 2718281828. ...

116. Let / (a;) = sin x.

By Arts. 95 and 78,

,-w8 6

sinz^-jlf+jT-.

x . fnir
+ j— sin —

\n \ 2

\ x™ . /n+l , \

Similarly cos x=l — r—+,— — ..

+ .— cos [
—

) +j—— cos
(
——- 7T+ &e i
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In Arts. 115 and 116, the student will see that the last

term can be made as small as we please, whatever be the

value of x, if n be taken large enough.

117. Let /(x) = log (1 + x)

;

therefore /' (x) = —^— and /' (0) = 1,

\x + x
)

therefore, by Art 95,

xs
x' [— 11

n_1

log(l + x)=x-- + __-... + ^_J-x»

+
(-l)"x"+1

_

(n+l){l + 6x)"n
'

In this series, if we suppose x positive and not greater

/ x V'
+1

than unity, then, as I -g- 1 can not be greater than unity,

(_ i)"~V
the error we commit, if we stop at the term - -

, is

not greater than ; that is, the error can be made as
n + 1

small as we please by increasing n sufficiently.

If we change the sign of x, we have

log(l-x) = -x-|--
3
--...-^-

(w+1)^_ fe)n+1 ,

which does not give a very convenient form to the remainder.

But by Art. 110, we may also write

x" (l-0)"x"+1

log (1 — x) = - x
2 3 '" n (l-0.c)"

+1
'
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where 8 is between and 1

;

{l-0)n xn+l
_ (x - 6.t

now _ fX - 0:V\
n

~{l-0x) 1{l-0x) n+1 \\-tix) '\-Qx

If x be less than unity, so also is g- , and I- „-\

can be made as small as we please by taking n large enough.

Hence, if n be taken large enough, the remainder can be

made as small as we please.

118. In the preceding Examples, we have been able to

write down the general term of the series, and the remainder
after n+ 1 terms. But ify(a;) be a complicated function, the

expression for /" (x) will be generally too unwieldy for us to

employ. It is, therefore, not unusual to propose such ques-

tions as " expand e' log (1 + x), by Maclaurin's Theorem, as

far as'the term involving xs." Here we are not required to

ascertain the general term, or the remainder, or to shew when,
for the purpose of numerical computation, the remainder may
be neglected. We proceed thus

:

/(x) = e
I log(l+a;),

therefore /(0) = 0.

By Art. 80,

/'(*) = e* log (1+*) +^,
therefore /' (0) = 1

;

r{x) ^lQg{ l + x)+Jfx- r̂
therefore /" (0) = 1

;

/">)= e*log(l + *) +^-^ +
lr^s ,

therefore /'"
(0) = 2

;

therefore /" (0) = ;

,w s „ „ x
5e

x
10e* 20e* 30e* ,

2iex

f{x)=e l0g (l +;B)+—___+ __
i _^-^. +^_

?
,

therefore f (0) = 9.
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Hence rf«log(l + a>) = x + ~ + y| +
9—-+ ....

This may be verified by multiplying the expansion for e*

by that for log (1 + x).

119. Methods of expansion of more or less rigour are

often adopted in special cases of which we will proceed to

give examples. We do not lay any stress upon them as

exact investigations, but they may serve as exercises in dif-

ferentiation.

Expand tan"\-c in powers of x.

Assume tan
-1

a; = A + A Yx + A 2
x2 + ...+ A„xn + (1).

Differentiate both sides with respect to x,

then -?—z = A l
+ 2A

2
x+...+nA nx"-

l + (2).

But —?—

j

i
= l-x2 +x*-x'i + xi - (3),

1 + x

by simple division, or by the binomial theorem.

Equating coefficients of like powers of x in (2) and (3),

we have

A
x
= \, ^4

2
=0, A = ~i. AA =Q,...

and putting x = in (1), we get A
o
= ; therefore

3 5 7
, -I XXX
tan xx = x — — + — — — +...

o o 7

This example may also be easily treated by the rigorous

method already used in Arts. 11 4... 11 7. It appears from

Example 18, page 65, that the ntb differential coefficient of

tan
-1^ with respect to x is

- -
'

sin ( —— n taiT'a:
J



92 EXPANSION OF FUNCTIONS.

Hence we have

-i x* x* x" . ,.„_! . n-n-

tan lx = x - — + -= - • • + — (— !) sin —

-

3 5 n 2

(_1)V+1
. f(n + l)w ,

, 1N , _,„ )+ i '- s sin
]

v—^ (n + 1) tan 'ftef

.

(ti + 1)(1 + 0V) » C J

And if x be numerically less than I, the last term can be
made as small as we please by sufficiently increasing n ; so

that the infinite series

x" x° x7

a;-3 + 5-7 + -

can by taking a sufficient number of terms be brought as near

as we please to tan~'a;.

120. Expand sin
_1

a; in powers of x.

Assume sm~1x =A
(l
+ A

l
x +A

2
x2 + ... + Anx° + (1).

Differentiate both sides ; thus

jn _ x*\
=A

i + 2A
*
x + 3A^++ nA^"-1 + ... (2).

But w=^r l+ix'
+l
^ x,+^ xt+

(3) '

by the Binomial Theorem.

Hence, comparing the coefficients in (2) and (3), we de-

termine Alt A2 , ..., and putting x = in (1) we get A =0.
Substituting in (1), we have

... 1 x8 1.3 x"
sm *=* + -._+_.- + ....

It should be remarked that there are two considerations

which limit the generality of this investigation. We take

—
; rr as the differential coefficient of sin"

1
x, whereas the

v'(l-ar)
radical ought strictly to have the double sign : see Art. 65.

And we take sin
-1
x to vanish with x, whereas we know, by

Trigonometry, that sin"
1 x might be any multiple of ir when

x vanishes.
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Similar remarks apply to the expansions in the next two

Articles.

121. Expand e"™"'1 in powers of x.

Put el><to-
l* = y (l),

then ^ = e
a.in-.x «

(2)
dx J{l—x)

9 8DL_Ia;

* = e
»Bn 'x + 3 .

dx1 1-xr (i _ ^t

therefore (1 ~^S _a!
|c
= a^ (4) '

Assume y = A +A
x
x + Aj?+ Aj? + . . . + A nx" + ...(5);

therefore -^- = A
1
+ *2A

a
x + . . . + nA„x"~l + ...

^= 2A
a + ...+n(n-l)A

<i
x^+...

Substitute these values of y, -£
, and -r^ , in (4), then equate

the coefficients of like powers of x on both sides, and we
obtain

a'+n" _ . . .

-*— "
(n + 1) (n + 2)

W "

Equation (6) will enable us to determine A
2 , A t , A t , ... as

soon as we know A^ and A
x

.

But A is the value of y or ef"
bl'lx when x = 0, and

.4, is the value of -$- or e
868""'"

., ~ , when a; = ;

therefore ^4 = 1, and A x
= a.

Hence, by (6),

a
a*

a _ a*

s= iTi
0_

[2'
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A - al±± A _(?l±i)_a•~ 2.3 l
' [3 '

and so on
;

therefore e« = 1 + ax +^ + a(
f
+1)

x3 +°V +2^ x*

|_2 [3 [4

«(«2 +l)(q2+32

)

2

Since e^-1
* = 1 + a sin

_1
a; + ^ (sin-'a;)

2 + . .

.

we have, by equating the coefficients of a in this series, and
in the result just found,

. _! 1 x* 1.3 a;
6

sm * = *+-._ +__ + ..

as already found.

Also equating the coefficients of a*, we have

/ -i s, » ,
2* « 2

2
.4

2
, 2'.4

2
.6

2

And equating the coefficients of a3 we have

<
Ein-.*,-^ +g3.(1+ >,y + y 3^(1+ i, + i,)*.

+ ...

122. Expand sin (m sin'
1
a;) in powers of x.

Putting y for the function, we may shew that

Proceeding as in Art. 121, we find that

(w + 1) (» + 2)^ = (w
2 - to

2

)A ; and thus

. . . _, . m m(l2-ro2
) , ^(I'-to2

) (3
2-m2

) .
3m(msin'a;) = —x+ \ '- x* +—- ^ '-x

t
+....

1 |_3 |_5

Similarly cos (to sin
-1

a:)

_ to
2

. to
2
(2

2 - to
2

) 4 TO
2
(2

2-m2
)C4

2 - TO
!!

) ,

~
LI H

x
'

!I
*"•"
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27
123. Expand ——- in powers of x.

We shall first shew that no odd power of x except the first

can occur in the expansion Denote the function by [x)

.

Then (x) — (— a;) =
e
x-l e*-\

x xe* x (1 — e*)

+ ,-—z= —3—, = - a
e*-l 1-e1 e*-l

This shews that no odd power of x except the first can occur

in (x) ; for every odd power of x which occurs in (x) must
also occur in (x) — (— x).

We have (x) (e
x — 1) = x ; therefore e

3^ («) = a; +
<f>

(x).

Differentiate successively with respect to x ; thus

e*{0'(x)+0(x)} = l + 0»,
e* {0" (x) + 20' (x) + (x)} = 0" (ar),

e* {0'" (x) + 30" (as) + 30' (*) + (as)} = 0'"
(*),

e*{0""(x) + 40'" (x) + 60" (a?) + 40' (as) +0 (a)} = 0""(x),

and so on.

Put a; = in these equations ; thus

0(0) = 1,

20'(O)+0(O)=O,

30"(O) + 30 (O) + 0(O) = O,

40"' (0) + 60" (0) + 40' (0) + (0) = 0,

and so on.

Hence we find in succession

f (<0 = -|, *"<<>) = g. f"(0)=0, 0""(O)=-^,...

It is usual to denote the expansion thus

:

the coefficients B
x , B3 , Bb , B7 , ... are called the numbers of
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Bernoulli, having been first noticed by James Bernoulli. It

will be found that

- Ft—— 7?— J- 7?— _L 7? — —
6' « 30' ' 42'

7_
30' 9

66
;

EXAMPLES.

- 1. If e
2r

(3 — a;) — 4#e* —x—S be expanded by Maclaurin's

4a;
s

Theorem, the first term is ——- .

[A

2. Expand log (1 + e*) in powers of x.

Result. log2 +|+-s -^+...
3. Expand e

1™"1 in powers of x.

xl

Result. 1 + x1 +-+...
o

_* 2tf*
4. e sec x=- 1 + x + x^+— + ...

m nx n (n + 1) a;
2

+T +
2.2 ~2 +

6. V(l + 4x + 12a;
i!

)
= l + 2a:+4a;, + ...

7. (^ + e
-I

)- = 2"{l+^ +^^ a;

4
+...}.

,
. ,„ , nx1 n(Sn-2)xt n {15 (n- If + 1) x"

8. (oo« a!)--l-^ +-^-J
|6_

'

+ ...

x1
2x* 16a:

6 16 x 17a;
8

9. _logcosx=
[
2 +^ + -

[

g-+-
[

g— +...

10
"

e

'I [2
+
L4 |_6 -}

11. sin-'(a!+ A)= Sin-
1x+-

r(i^J
+

(T^|
-

l + 2«*tf ,
3x(3+2x2)hl

(1-^)1 13/ (l-a?)i l£
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12. \og(l-x + ^)=-x + ^ +^ + ^-^...

13. log{x +Aa> + X>)}=log a +l-l^ + ±l^-..
x* x"

14. log(l+sina:)=x- — + — ...

I- taa-i» _, , T ,

X X 7x
Id. e -l+a+

2 6 24
-

16. For what values of x does Taylor's Theorem fail, if

y= . / \- -. tj
J-,

and which is the first differential

coefficient that becomes infinite ?

17. Shew that

A*
tan"

1
(a; + h) = tan

-1
a; + h sin*0 — — sin

5# sin 20

hs
h*

+ — sin
3

sin 30 - — sin'9 sin 40 + . .

.

3 4

where 8= - — tan
-,

a;. See Example 18 of Chapter V.

18. By putting h = — x in Example 17, shew that

it n . „ „ cos'# sin 20 cos*0 sin 30- - = sin cos + +

cos
4
9 sin 40+
i

+ .-

19. By putting h = — x in Example 17, shew that

ir _ sin sin 10 sin 30 sin 40

2
~

cos~0
+

2 cos'0
+

3 cos
8 +

4 cos'tf
+ '"

20. By putting h = — ^(1 +a;s) in Example 17, shew that

i(7r-0)=sin0+^sin20 + ^sin30 + 7sin40 + ...

2 2 3 4

T. D. C. H
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CHAPTER VIII.

SUCCESSIVE DIFFERENTIATION. DIFFERENTIATION OF A
FUNCTION OF TWO VARIABLES.

124. We have, in Art. 77, denned the second differential

coefficient of a function to be the differential coefficient of the

differential coefficient of that function. The differential

coefficient of the second differential coefficient has been called

the third differential coefficient, and so on. We are now
about to give another view of these successive differential

coefficients.

125. Let y=f{x)>

y + Ay=f(x + h),

therefore Ay=f(x+k)—f (x)

.

In the right-hand member of the last equation change x into

x + h and subtract the original value ; we thus obtain

f(x+2h)-f{x + h)-{f{x + h)-f(x)},

or f(x + 2h)-2f(x + h)+/(x).

This result, agreeably to our previous notation, may be
denoted by A(A^), which we abbreviate into A!

^. Hence

AV =/(* + 2A) -2/(x + h) +f (as).

Similarly A (A2
y) or A3

y will be equal to

f{x + 3A) -2f(x + 2h) +f (x + h)

-[f(x + 2h)-2f(x + h)+f(x)},

that is, A'# =f(x + 3h) - 3/(x + 2h) + 3f(x + h) -f(x).
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126. By pursuing the method of the last Article we find

expressions for A*y, A5
y, ... We shall not for our purpose

require the general expression for A"y. It will, however, be

easy for the reader to shew, by an inductive proof, that

^n
y=f(x + nh)-nf{x+(n~l)h}+^^f{x+(n-2)h}-...

L~

±nf(x+h)+f{x).

A 2
if , d?y

127. To shew that the limit of jir^r* 1S j*

We have, by Art. 125,

A»y =/ {x + 2h) -2/(x+h)+ f(x).

But, by Art. 92,

/(* + 2h) =/(*) + 2hf (x) +^§-V" (*) + (

fjpT (* + M>),

flx + h) =/(*) + hf (x) + J^-f (x) + £/'" (x + 0,i),

# and 5, being proper fractions. Hence

AV = A
2/" (*) + £ W" (x + 26k) -/"' (x + *,*)].

Divide both sides by h2
, that is (Ax) 2

, and then let h be

diminished indefinitely. Hence we obtain

A2
v

the limit of 7-r-fi =/" (x)

;

AV . d'y
that is, the limit of , . ,. is -r-4

.

(Ax) 2
aLt

2

128. The result of the last Article may be generalized by
the inductive method of proof. Assume

A«y=hT(x)+h"+^(x) (1),

where yfr (x) is a function of x and h, which remains finite

when h is made = 0. From (1) we have

A"+1# = h"f" (vr + h) + h
n+

'y}r (x+h)- {/,"/" (x) + A"
+1^ (x)}

= h"[f*(x + k) -f" (x)} + A"
+1

fr (x + h) - 1 (x)}.

H2
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Now, by Art. 92,

f (x + h) =/» (x) + if™ (*) + £/- [
X + eh),

-f (X + A) = l|r (x) + fop {x + 6Jl),

therefore

A"+i

y = h^f*
1
(x) + hr* {$/•" {x + eh) +y(x + eji)}

= h"y+1 (_x)+h'^
1
(x) (2).

Equation (2) shews us that, granting the truth of (1), we
can deduce for An+1

2/ a value of the same form as that we
assumed for A"?/. But Art. 127 gives for Aa

y an expression

of the assumed form ; hence A3
y has the same form, and so

also has A'y, and generally &"y.

From equation (1), by dividing both sides by h" and then

diminishing h indefinitely, we have

the limit of *^=/(*);

that is, the limit of . A '.„ is -^

.

' (Ax)" dx"

129. Hitherto we have only considered functions of one

independent variable; that is, we have supposed in the equa-

tion y =/(x), although quantities denoted by such symbols

as a, b, ... might occur in/(x), yet they were not susceptible

of any change. Suppose now we have the equation

u = x2 + xy+ y
2
,

and let y denote some constant quantity and x a variable,

we have
du „

From the same equation, if x be a constant quantity and y
a variable, we obtain

du

dy = 2y + X-

Of course we cannot simultaneously consider x both con-

stant and variable ; but there will be no inconsistency if on

one occasion and for one purpose we consider x constant,

and on another occasion and for another purpose we consider

it variable.
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130. If x and y denote quantities such that either of

them may be considered to change without affecting the other,

they are called independent variables, and any quantity u, the
value of which depends on the values of x and y, is called a

"function of the independent variables x and y;"

du d'u efu . . . ..__, . ,
j- , -T-s. ~f—%, • ••> denote the successive differential co-
de dx dx

efficients of u, taken on the supposition that x alone varies
;

du d\i d'u . . ,,„ .
,

it > yi) ~n i • • • i
denote the successive differential co-

dy dtf dy" '

efficients of u, taken on the supposition that y alone varies.

131. If u be a function of the independent variables x

and y, then -j- will also be generally a function of x and y.

Hence we may have occasion for its differential coefficient

with respect to x or y. The former is denoted by

a2u

d2"

as already stated ; the latter is denoted by

, du

dx

which is abbreviated into

dy

d'u

dydx'

Again, both -j-
2
antl •=—j- will be generally functions

of both x and y. These may require to be differentiated with

respect to x or y. Hence we use such symbols as

d3u d'u , d'u

dydx2 ' dxdydx' dy*dx'

the meaning of which may be gathered from the preceding

d3u
remarks. For example, -^—j—r- implies the performancer dxdydx r

of three operations : we are to differentiate u with respect
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to x, supposing y constant; the resulting function is to be
differentiated with respect to y, supposing x constant ; this

last result is to be differentiated with respect to x, supposing

y constant.

132. In considering the equation y=f{x), where we have

one independent variable, the student could be referred to

analytical geometry of two dimensions for illustrations of the

nature of a dependent variable and of a differential coeffi-

cient. See Arts. 35... 43. In like manner, if he is acquainted
with the elements of analytical geometry of three dimensions,

he will be assisted in the present Chapter of the Differential

Calculus. For instance, the equation

z = ax + by + c

represents a plane ; x and y are two independent variables, of

which z is a function. Here

dz _ dz _ ,

dx ' dy '

d2
z d3

z
and all the higher differential coefficients, ~, ^- 3 , ...,

itd. Ct J..

vanish.

Again, z = J(r* - x* - f) (1),

is the equation to a sphere. If we pass from a point on

the sphere, whose co-ordinates are x and y, to a point whose
co-ordinates are x -f Ax and y, we vary x without varying y.

If in this case the value of the third co-ordinate be z + Az,

we have
Z + Az = J{r*-tf-{x + Axy} (2).

Az
From (1) and (2) we can of course find — ; and its limit,

Ax

which we denote by -=-
, will be -^-

2
j j .

CLX ^ [T — CC ~~ tJ )

The process is the same as if we had given

Z = J{a?-a?),

where a is a constant ; from which we deduce

dz _ — x
dx ~ J(a* — X*)

'

and finally put r* — y* for a'.
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On the other hand, if we pass from the point (a:, y) to

a point having x and y + Ay for its co-ordinates, we have,

as before,

z + AZ = J[r<-a?-(y + Ayy} (3).

Now, in (2) and (3) we have used Az; but we do not

mean that the value attached to the symbol is the same in both

cases. If there were any risk of error by confounding them,
we could use A'z in (3), or something similar. But in fact

dz
we only use (3) to assist us in forming a conception of ,-

;

and since we look on -=- and -^- as whole symbols not admit-
dx dy J

ting of decomposition, the question can never occur, " Is the

dz in -^- the same as the dz in ~ ?"

dx dy

133. When u is a function of two independent variables,

,, ,-~ ,. , ~ du du d*u d'u
the differential coefficients j— . j-, -,,, , , , ... are

(tjc cty dx Q/X clii

often called "partial differential coefficients." Each of these

differential coefficients is obtained by one or more operations,

every operation being conducted on the supposition that only
one of the possible variables x and y is actually variable.

Let us suppose for example that u = tan
-1 -

; then

du y
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and by differentiating -j- with respect to a; we obtain

dx (ar + tfj*

'

Thus we see that in this example

j du , du

J± = dy m
dy dx '

or, as we may write it,

d'u d*u
(2).

dy dx dxdy

"We shall prove in the next Article that this result is

universally true. Of the two modes of writing the result

given in (1) and (2) the second is the more commodious, but
it has the disadvantage of making the theorem which we
have to prove appear obvious to the student, because it sug-

gests to him that he is merely comparing two fractions. But
as we have already remarked, a symbol for a differential

coefficient is defined as a whole, and is not to be decomposed
into a numerator and a denominator. See Arts. 26 and 77.

134. If u be any function of the independent variables x

and y,

, du jdu
d^r d^j-
dx dy

dy dx

Let u =
<f>

(x, y) ; change x into x + h, then by Art. 92,

4>{x+ h,y) = <j>(

we may therefore write

<f>(x+h,y)-<f>{x,y) = h£
;

+ h;

'v (1),

where v is a certain function of x and y, which remains finite

when h = 0. In (1) write y+k for y; then the left-hand

7 72

£ {x+ h, y) = <f>
{x, y) +h£ + j<p"(x + 6k, y) ;
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member becomes
<f>

(x + k, y + k) — $ (x, y + k) ; by Art. 92

/}

-,- becomes -i- + k —*—I- tfB, -where 8 remains finite when
dx ax ay
k = ; and v becomes v + ki, where a is a quantity which re-

mains finite when h= 0, for it tends to -*- as its limit. Thus
ay

4>{x + h, y+k)-<f>(x,y + k)=h
(

^ +hkJ^ + hk*a

+ h*v + hVcz (2).

Subtract (1) from (2) ; thus

i>{x + h,y + k)-<f>(x+h,y)~^(x,y + k) + (f>(x,y)

d
dx

dy

Divide by kk, and then suppose A and k to diminish inde-
finitely ; therefore

, du

dx
., = the limit when h and k vanish of
dy

if> (x + h,y + k) -4>{x + h,y)-<j> (x. y + k) + <f>
(x, y)

kk

In a similar way, by first changing y into y + k, and after-

jdu

wards x into x+ h, we can prove that ,
•

is also equal to

the above limit.

,du j da

TT dx dy
Hence —-.— = —r^- •

dy dx

135. The object of the preceding Article is to prove that

d*u d2u
; this is done by shewing that each of these

dy dx dx dy
quantities is equal to the limit of a certain expression. It is
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comparatively unimportant what that expression is, but it is

of some interest to notice the analogy of the result to those

in Arts. 127 and 128.

Proofs of the proposition in the preceding Article have
sometimes been given which appear simpler than that here
adopted, but they are deficient in strictness. In particular

an assumption has sometimes been made which deserves to

be noticed. The following is substantially a proof that has
jdu,
d
di .

been given. To obtain —^— involves, according to the. defi-

nition of the symbol, the following operations. (1) In the
function u we put x + h for x, subtract the original value
from the new value, and then divide by h. (2) We find the
limit of the result when h = 0. (3) We now put y + k for y,

subtract the original value from the new value, and then
divide by k. (4) We find the limit of the result when k = 0.

All this is immediately derived from first principles ; the
next step however is the assumption that we may perform
the third of the above operations before the second instead of

after it. With this assumption the required result is readily

obtained ; for from the first operation we get

</> (x + h, y) — <f>
(.r, y)

h
'

'

then from the third we get

<j> {x 4- h, y + k) -
<f>

(x + h, y) - </> {x, y + k) + j> (x, y)

hk
,du

and according to our assumption, the limit of this is ——

.

_.du

dv
And by a similar assumption it is found that -r* is also

equal to the same limit.

One more remark must be made to guard against a possible
error. In the proof ofArt. 1 34 we have used v for J <j>" (x + 0h, y)

•

in this expression all that is known of d is that it is a
proper fraction, and it must not be assumed to be a function
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of x only. Thus when y is changed into y + k the value of

8 will generally change. This does not affect the preceding
proof, because it was not necessary there actually to find the

value of -i- ; but the assumption that 6 does not change

when y changes has rendered some proofs unsound which
have been given of the proposition in Art. 134.

136. The important principle proved in Art. 134 is

enunciated thus :
" The order of independent differentiations

is indifferent ;" or it is referred to as the principle of the
' convertibility of independent differentiations." It may be
extended to any number of differentiations; so that if a
function of two independent variables, x and y, is to be dif-

ferentiated m times with respect to x, and n times with respect

to y, the result will be the same in whatever order the dif-

ferentiations be performed. In proof of this we have only

to apply the theorem of Art. 134 repeatedly in the manner
shewn in the following example.

To prove that -—-^j
d-

<Pu dy d.e

dy
2 dx

<Fu

dy dx dy

by definition,

by Art. 134,

, by definition,

d2
v , e da

, it v = •

dy dx' dy'

= SL., by Art. 134,
dxdy J

d*u

dx dy*

'
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I'i7. If u be a function of the three independent variables,

x, y, z, we have in a similar manner

d'u d'u

dy dz dz dy '

d'u du
dx dz dz dx

'

du d'u

dx dy dy dx

'

cfu d'u d3
u

dx dy dz dx dz dy dz dx dy '

and so on.

EXAMPLES.

T . a?y „ - d'u . d?u
1. It m= »

J
2 , find . , and

a~ — z" dx dy dy dz
'

2. Verify in the following cases the equation

d'u _ d'u

dx dy dy dx
'

u = x sin y + y sin x,

u = x\ogy,

u = xv
,

u = log tan -
,

_ ay — bx

by— ax'

u = y log (1 + xy).
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3. If u = Ax^y* + BsPy? + Cxiy' + . .

.

where a + a.' = fi + l3' = y + y' = ... = n,

du du
shew that x -=- + y 7- = ?iu.

In this example u is called a homogeneous function of n

dimensions.

4. If m be a homogeneous function of n dimensions,

shew that

d'u d*u , , s du d*u d'u , ,, du
X
d? + yd^dy

={n ~ X)
dx'

X
aZdy + *d? = (

n - X)
d?

5. If u be a homogeneous function of n dimensions,

shew that

„d?u „ of'w .rf'u , ,.

6. Verify the theorems in Examples 3 and 4 in the follow-

ing cases

:

u=(x + y)
3

,

X + tf

u=V{x' + y*).

7. If u = xV + e^V -I- utyV, shew that

8. If u = e
1
", shew that

(l + Sa^ +xyzV""
,
8 „',^z.'»'

dx dy dz

9. If u=y<J{a'-o?) + x vV-y2

), shew that

__ +V(a _ x)V(a - y)^j =_^_^_r
_

!)
,
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10. If u = tan"
1
-77 ^ jr . shew that
vu + ^+yy

cPu 1 d4u \bxy

dxdy (i + a? + y)l' da'dy (i + x» +y;
J

11. If M = a;V(a
:!-y!

)V(a
i! -«2

)+3'V(a
2 -z,!

)V(«
2-*i!

)

+ zJ(a.--x-)J(a--y-)-xyz,

shew that

12. If u = log (x
3 + y

3 + z* — 3xyz), shew tliat

1 dnu 1 du du du_ _u

Qdxdydz 3dx dy dz '

du du du _ 3

dx dy dz x + y + z

'

dru d*u d?u cPu d?u
4

<Fu

dx2
dy' dz2 dx dy dy dz dz Ux

9

(x + y + z)
2 '

d*u d*u de
u 360

! '

~7~
3 J 2 J_ " '

Jx* dy2 dz2 ^ dx3 df dz
T

dx' dy3 dz {x + y + z)°

d-u d?u d*u _ 3
!
~» 172 I J. 2 'dx-^dy-^dz 2

(x +-/ + -)"

d'u d-u d~u 72

dx3 dydz dxdy 3 dz dxdydz3 (x+y + z)-
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CHAPTER IX.

138. Suppose y = z + x$(y) (1),

where z and x are independent, and it is required to expand

f(y) according to ascending powers of x. Put u for f(y),
then, by Maclaurin's theorem, we have

da. x1
d?u. x3

d?u,
U = u

°
+ X

df + TT>.2-dJ
+ \3d7 + -

where v., -r-°, -?-= , ... denote the values of u, -^-, -y-. , ...
ax ax dx dx

when x is put = after differentiation. We proceed to trans-

form these differential coefficients of u with respect to x into

a more convenient form in order to ascertain their values
when x = 0. We shall first shew that

*{'«£}-={'«£} «•

supposing that v is any function of the independent quantities

x and z, and F(v) any function of v.

To establish (2) we need only observe that the left-hand

member is

_,. . . dv dv -r, . . d?vF ^lxJz+ F ^d^Tz-
and the right-hand member is

„,. .dv dv r,, . cPy

dxdz dz dx'

and these two expressions are equal by Art 134.

From (1) we have
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therefore

dy 1
*-• therefore

Hence

dy _ <fr (y)

dx l—x(j>'(y)

dz 1 - x<\> (y)

Also
di

=
dydx di~~dydz'

therefore
dx
=
^^~dz ^ -

d'u d { , , , du]

=r4^}/
'w S}-

sinceM=/(y)>

'sh's}'

-ifasrSWw.
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Suppose, according to this law, that

di'
=d^W^ 5

then
dx^

=dJd^^ 5}

*to)P£

which shews us that the expression for j-s+, follows the same

d"u
law as that for -5-^ . Hence, since the law has been proved

to hold for -y~2 and -j-j, it holds universally.

Cult
In j-jp we are to make x = a/ifer the differentiation has

been performed ; but when we transform -^ , by the above

formula, into an expression involving only differential co-

efficients taken with respect to z, we may put x = before the

differentiation, since x is to be considered as a constant in

differentiating with respect to z. When x = 0,

y = 2,

dx* dz feWW'i*)}

T. D. C.



114 LAPLACE S THEOREM.

and thus

+ +ga«{*W!V'W
This result is called Lagrange's Theorem.

1 39. Suppose 3/ = F{z + x§ (y) }

;

required the expansion off(y) in powers of x.

Let t stand for z + x(f>(if) ; then

dy dFdt dF (, , . A , . . dy\

d*
=
dtdx

= di{+M +X*Mdl\>

t+ ...

therefore
dy +<*)-%

dx , dF'

. <7y dF dt dF 1 ±r . . dy
also S =

-5*S
=
&i

1 + a!*Ws

therefore

dF
dy _ dt

dz~ , dF'

From this, in the same way as in Art. 138, we deduce
that

where u =f{y)-

If we make x = in the equation

y = F{z+x4>{y)\,
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we deduce y = F(z),

<t>(y)=<p{F(z)},

du^ df{F(z)}

dz dz '

and finally,

+ +££[?pw*J?»] + -
This is called Laplace's Theorem.

140. Lagrange's Theorem may of course be deduced from
Laplace's, by putting F{z) = z. But Laplace's theorem may
also be deduced from Lagrange's, thus :

In the equation y = F{z + xcf> (y)} (1),

put z + x$(y)=y',

then y = F(jf),

thus y' = z + xcf>{F(y')} (2),

and f(y) becomes f{F(y')}.

Thus we are required to expand f{F{y)} in powers of x,

by means of equation (2). But this is precisely what La-
grange's Theorem effects, the complex functions f{F(y')} and

<£ {F(y')} taking the place of the simple functions f{y") and

<t>(y')-

141. It must be remembered, that in quoting Maclaurin's

Theorem, which serves as the foundation for those of Lagrange
and Laplace, we ought strictly to have used it in the form
given in Art. 95, with an expression for the remainder
after n + 1 terms. That expression for the remainder however,

becomes so complicated in this case, that we have not referred

to it. The investigation of Lagrange's and Laplace's Theo-

rems must be confessed to be imperfect, since the tests of the

convergence of these series, which alone can justify our use of

them as arithmetical equivalents for the functions they profess

to represent, are of too difficult a character for an elementary

work. The advanced student may consult Moigno's Lemons

I 2
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de Calcul Diffirentiel, 1 8me Legon, and Liouville's Journal
de Mathe'matiques, torn. xi. p. 129 and 313.

142. If x = a + y<f> (x), we have by Lagrange's Theorem

/W =/(«)

+

y {<£ (*)/' (*)} +j^ {<K^i
2/' (*)

•

where in the coefficients of the different powers of y, we are

to make x = a after the differentiations have been performed.

Let y or
<}>(x)

=$ (x), so that a; = a is a root of y{r (x) = ;

then
•

/»(*-«) -[ frfr)}' d_ rf(x)(x- ay
L *(*) J 11 **!_ ItWf

where, in the coefficients of the different powers of i/r (x) after

the differentiations, x is to be made = a. This series for f(x)
in powers of ijr (x) is called Burmann's Theorem.

143. Let "<y
l

(x) denote the inverse function of yp- (x), so that

if u = ifr (x) we have -^r'
1
(u) = x, and therefore i/r{^

_1
(u)} = u.

If we write i}r~
lx for x in Burmann's Theorem, we have

/{*- (*)}=/(«) + * +
,

c
2 d '/'(x)(x-aH

[2dx|_ {^ v
x)}

2

r/'(x)(x-a)l

L *(*) J

xl^P r/'(x)(x-a)H

No change is made in the quantities in the square brackets,

for they do not contain x when the operations indicated are

completely performed.

If f{u) = u, we have

..... Yx — a~\ Xs d V(x — a)
r

x*_ d^
[
(x-q)3

+
|3oVLbK*)f
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and if a = 0, so that yjr (x) vanishes with x,

Xs
<P_

[3 dx*
J

A{f(*)A

EXAMPLES.

1. Given y = s + x&, expand y in powers of x.

Here
<f> (y) = *,

fiy) = y ;

therefore f~ j^ijj•/' (*)} = 35^ «" = »"^

Thus y=^+ xe'+
l̂

2e2!+
l^

S

3
!
e
s' + ... +^n-,

e"'+...

•V
2 — 1

2. Given y = z + x , expand y in powers of x.

Here ^(y) =2__,

/(y)=y;

therefore ^ {^Wl'/W} = ^^i («*"^
Hence 2,

= *+^ (s
2 - 1) + g.p^ (*

2 -
1)

2 + ...

3. Given a;y— log# = 0, expand 3/ in powers of x. From
the given equation
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If then we put z =- in the result of the first Example, we

deduce

restore yx for y and divide by x ; then

il
2/ =l + x + -3+...4---

1
n- + ..

4. If v = ? 77, expand if in ascending powers

of a;.

Since y :

1 + V(l - x*)

'

we have y V(l — *2

) = & — y ;

therefore y
2
(1 — a;

2
) = x2 — 2xy + y

!
(1).

and y=\ +\ x-

v*We must then put y = z+—x,

V
2

so that 4> (y) = | , and /(y) = y*

Thus y" = «• + x | *"«+
. . . +£ Jr^ (**--) + . . . (2),

and after the differentiations are performed, we must put

f
for s -

The quadratic equation (1) which we have employed gives

two values for y, namely -. =7- ; the series which we
l±V(l-a:)

have obtained in (2) applies to the value with the upper sign.

For 77- a-.
= = j : and if the w"1 power of

1 + V(l — « )
* x

2 ~2~8~-
this be expanded in ascending powers of x the first term is
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obviously
^-J

: whereas the first term of the expansiou with

the lower sign would be (-) , that is (-) .

f-^^F-©*-©""*"-^©"
n (n + 4) (n + 5) /aA""

16

1.2.3 U/
+ '"

Let x1 = 4t ; thus we obtain

1 - V(l - 4f)

2t
1+nt + »-MAe

,
n (« + 4) (n + 5) ,+ lTO r+ -

Change the sign of n; thus we obtain the expansion in

powers of , off^f, that is of j,-^}",

that is of
{

1+^- 4t

y.

Hence {*
+^ ~^j- 1 - rU + !±^> f

n (n - 4) (
n - 5) 3

1.2.3
t+ -

Hitherto we have put no restriction on the value of n;

but let us now suppose that n is a positive integer.

If we expand {1 + */(l-At)}n and {1 - V(l - 4«)}" by the

Binomial Theorem, we see that the sum of the two expressions

will be a rational function of t which will be of the degree -

n — 1
if n be even, and of the degree —-— if n be odd.
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By adding the expansions we have found above we obtain

1 + V( 1-4QT + (1-V(1-4Q

and by what we have just shewn the series on the right hand
71 71 ~\~ 1

extends to - + 1 terms if n be even, and to —— terms if n

be odd, so that the remaining terms in the two expansions

must disappear ; that is, the terms arising from one expan-

sion are cancelled by similar terms arising from the other.

In the same manner as we deduced the expansion of y" from

the equation y = jj- ^ we may deduce the expansion

of any other function of y ; for example take log y. Thus

] flg y -log, + «i.+ ...+gI^ [ (0 +

where after the differentiations are performed we must put

cc
- for z. Therefore

. x /x\* 3 fx\* 4 . 5 fx\* 5.6.7 /x\*

x l-*J(\-x*)
and y = t— t,

= J
.

Let x' = U, and we shall obtain

, 1 - V(l - 4«) , 3 ±„ 4.5. 5.6.7.
log -^ ' = t + -t -\ f-\ t

4 +b
2i

T 22.32.3.4
The expansions which this example has furnished are of

some importance in mathematics.

5. If a; =ye", expand sin {a+y) in powers of x.

We have given y = xe~". Suppose then y = z + xe~", so that

# (y) = «""» and/(#) = sin (x + y).

The general term given by Lagrange's Theorem is
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which becomes

— (-1)** (l+n^a-cos {a + z - (n- 1)
<f>],

where cot <p = n, by a process similar to that in Art. 81.

Putting z = in this, we have for the required expansion

sin (a + y) = sin a + x cos a + . .

.

+
|

— (- I)""
1
(l + n2

)

V
cos {z - {n - 1) cor'n) + ...

G. Given a—y + x logy = 0, find sin y in powers of x.

7. Given y = z + xyveq", expand y'V in powers of x.

8. Given y = z + x siny, expand sin y and sin '2y in powers

of x.

9. Given y = log (z+x cos y), expand e" in powers of x.

10. From the equation xy* + Ixy* + 'dxy* + 2y + 1 = de-

termine y in ascending powers of x.

n . 19 9 , 1395 ,

Result y-----*--*-— a...

TT

11. If y = e
4+I8tol°81

', find the first four terms of the

expansion of cos log y in powers of x.

1 x 3x2 *'

12. If y* + my'+ ny = x, shew that one value of y is

a; m fxV 2m?— n /x\' _ 5m' — 5n^w /^Vj_
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CHAPTER X.

LIMITING VALUES OF FUNCTIONS WHICH ASSUME AN
INDETERMINATE FORM.

144. In the statement, the limit of —3- = 1 when 6
a

diminishes indefinitely, we have an example of a fraction

which approaches a finite limit when the numerator and de-

nominator each tend to the limit zero. The object of this

Chapter is to find the limit of any fraction of which the
numerator and denominator ultimately vanish, and also the
limiting value of some other indeterminate forms.

145. Form -

.

suppose ,
-.

'

t (*)

such a fraction that both numerator and denominator vanish

when x = a; it is required to find the limit towards which

the above fraction tends as x approaches the limit a.

We have proved in Art. 92 that

$ (a + h) — <j) (a) = h$ (a + 6h),

f (a + h) - yfr (a) = h^'(a + OJi).

If then
<f>

(a) = and i/r (a) = 0, we have, by division,

<f>(a + h) _ sf>'(a + 6h)

f (a + h)~ v/r' (a + 6J1)

'

Let h diminish indefinitely ; then

the limit when x = a 01 , . . is , .
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146. Suppose that not only

<f>
(a) = 0, and i/r (a) = 0,

but also $ (a) = 0, <£" (a) = 0, ... <£" (a) - 0,

and
-f' (a) = 0, -f" (a) = 0, .. .i|r

n
(a, = 0.

By Art. 92,

<fi
(a + h) - </> (a) - h# (a) . . . - Z-p (a) =^ </>"

+1
(a + 0A),

f (a + A) - Vr (a) - Af ' (a) ...- j- ^(a) =^ f»" (a + 6>,A).

Hence, by division, we have

4>(g + A) <F
+1 (a+6h)

f (a + h) i|r"
+1

(a +
X
A)

*

Diminish A indefinitely, and we have

±M ;, f*' to

147. In Art. 145, if

-f (a)=0,

and $' (a) = some finite quantity,

A (x)
we have the limit when x = a of

; ,
is infinity ;

if <f>'(a) = 0,

and ^r' (a) = some finite quantity,

we have the limit when x = a of , . is zero.

And in the same manner, we may shew that if the first

of the differential coefficients </>'(«), <}>"(a), ... which does not
vanish, is of a lower order than the first which does not vanish

. . (h(x)
of the series \Jr (a), &" (a), ..., the limit of , . . when x = a,

is infinity ; if of a higher order the limit is zero.
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These results may also be obtained without the use of

Taylor's Theorem.
If $> (a) = and i|r (a) = 0, we have

<f>
(a + h) —

<f>
(a)

<f>(a+h) _ <f>
(a + h) -

<f>
(a) _ h

yfja + hj
~

i}r{a + h)-i}r(a) ~ ifr (a + h) - yfr (a)
'

h

Now diminish h indefinitely, and we have

±M is
4>'(a)

t (
x
) ¥ («)

'

If
(f>

(a) = and -v/r' (a) = 0, we have in the same way

the limit when x = a of ,,, . is ,,,, : .

yr (x) Y1 (a)

Hence, the limit when x = a of
. , { is ~-J~. .fW -f («)

This process may be extended, giving the same result as

in Art. 146.

148. Form —

.

Let <f>(x) and ^r(x) be functions which both become infinite

when x = a; it is required to find the limit of the fraction

tw i •

*(*)

and the fraction on the right-hand side takes the form -

. .

°
when x = a; hence, by the previous rules its limit is

_1W lt(«)J f («)"

»(«) = f^(°)l
, ^

,

(«).

t(a) ty(a)J f(a)'

therefore ££> =^ .

Hence



INDETERMINATE FORMS. 125

149. From the last Article it would appear that the limit

of a fraction which tends to the form —, may be found by

considering the ratio of the differential coefficient of the
numerator to the differential coefficient of the denominator.
But, by Art. 113, when for a finite value of the variable a
function becomes infinite, so does its differential coefficient.

Hence, if

rr-r takes the form —

,

Y (a) <*>

,,, { takes the same form,
Y (a)

and thus the result of Art. 148 would appear to be of no
practical value. It may, however, happen that the limit of

© (x) . © (x)
the fraction ~\— is more easy to settle than that of ^4-r •

r (*) r (*)

For example °
'

'

x

oo
when x = 0, takes the form — .

oo

Here
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<b (x)
Suppose the limit of T . is really zero ; then the limit

of -
,

, T is really finite, namely, unity. Hence, it lias

been proved that

. ifr (a) + ft (a;) . f (a)jj>)

the limit of . , Z when a; = a is ,,, ,
.

f (») T (a)

that is 1 + the limit of£M= i +4^
t (*) t («)

tlierefore the limit of ,
.'

,
= ,, , . .

f (x) f (a)

ft (x)
If the limit of J-—- be really infinity, then the limit of

fix)
J

^-)—- is really zero, and therefore, as just shewn, the limit of
<p{x)

-,^t~ will be zero. Hence, the limit of ,,,
'. will be infinity.

ft
(x) f (x)

J

Combining then this Article with Art. 148, we can assert

that if
ft

(x) and i/r [x) both become infinite when x — a, the

limit of ,

.'
r will be the same as the limit of ,,, . .

yjr (x) -f (x)

131. The two Articles 148 and 150 may be replaced by
the following mode of exhibiting the proposition.

Suppose
ft (a) = 00 , and ifr (a) = 00

.

Then -^— = 0and -^ = 0:
ft (a) f (a)

1 <p(a + 8h)

now <Ha + h)_ +(a + h) _ ft(a + 6h)}'
, , _xD0W *£+A) -— Tg+^A) '
<
Art 106>

'

ft(a + A) {ft(a + 0A)}
2

ft (a + <9ft)

therefore 0> + g*) _ <t> (<» + **) ^(a+ eh)

yfr'(a+8h) fja + eh)' <f>(a + h) '

ty (a + h)
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If SJdL has a finite limit when x = a, the limit of the

^M*) ...
second factor on the right-hand side of the equation is unity.

Hence

the limit of^ = the limit of %&

.

yjr(x) f (x)

But if -
. . tends to or oo as x approaches a, it will in

-f(x)
general finish by approaching the limit in such a manner that

the second factor will in the first case be less than unity,

d> (x)
and in the second case greater. Hence, ,,, . becomes zeroS fix)

<b(x)
or infinity at the same time that -——r does.

J
Y\x)

152. In the preceding rules for finding the limit of a

function which takes the form - or — when x = a, we have
oo

made no supposition as to the magnitude of a. Hence the

rules are often applied to the case in which a is infinite. But
for a direct demonstration of this case we may proceed thus.

Suppose the limit of
' required, when x = oc ; it being

known that then either <j> (x) = and ^jr (x) = 0, or <£ (x) = oo

and -yfr (x) = oo .

Put x = -, then

£C?) =tM

Now as y tends to zero, we have, by preceding rules,

the limit of --^i = the limit of 2 i£i

= the limit of—^- = the limit of fvM

.
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153. For example, required the value of

1

—— when x = 0.
cot x

Differentiating both numerator and denominator, we find

the required limit is the same as that of

_ 1_

ft" -- sin
2
a; , . .— or ot . , that is, unity.

— sin a;

The same result may be obtained by writing the proposed

fraction in the form -
; thus

1

x tana; 1 sin a;—— = or .

cot a; x cosa; x

1 sm cc

The limit of is 1, and the limit of is 1 ; therefore the
cos a; x

limit of the proposed fraction is 1.

As another example we may find the limit of -^ when x is

infinite, n being positive.

xh nxn~y

The limit of -= = the limit of —

—

e* e
x

= the limit of "("-^
"""'

.
e
x

Proceeding thus, we shall, if n be a positive integer, arrive at

the fraction -,-, the limit of which is 0. If re be a fraction,
e
x '

we shall arrive at a fraction having e" in the denominator and
some negative power of x in the numerator, which also has

for its limit.

. . sc"
Hence the limit of — , when x = oo , is zero.



INDETERMINATE FORMS. 129

154. A remark nhould be made for the purpose of pre-

venting a misconception of some of the results of this Chapter.

Suppose
<f>

(x) and a/t (x) both to vanish when x = a, and that

<f>'(a) = while ijr' (a) is finite. We say then, that when x= a,

the limit of && = the limit of%M

,

meaning that each side of the equation vanishes. It does not

follow necessarily that

, , , -=- ,,, ,
has unity for its limit.

For example, let
<f>

(x) = x\ yfr (x) = sin x,

then <f>'(x) = 2x, ijr (a;) = cos x.

When x approaches the limit zero, we can infer that, since

d> (x) , <f> (a;) _.....
;,; : approaches zero, so also does , , : . Eut it is obviously
yfr(x)

rr
_' yjr{x)

J

not true that the limit of

a? 2x „x* cos x .

-. or oi -

—

. is unity

:

sin x cos x 2x sin x J

the limit is in fact L

155. It should be observed that there are examples which

may be solved by means of the Differential Calculus, but

which can also be solved, and sometimes more simply, by

common algebraical transformations. For instance,

(x — a)*

(a? -a*)*

when x = a takes the form - . Put x = a + A, and the fraction

becomes

A* A*
or

A*(2o+A)* (2a + A) i
'

and the limit, when A = 0, is 0.

T. D. c.
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Again, suppose we have to find the limit of

*/x— 1 + V(#-1)
V(a'-i)

as x approaches unity
;
put x = 1 + h, and the fraction becomes

V(A + 1) - 1 4- *Jh

<J{h* + 2h)

Multiply both numerator and denominator by

J{h + 1) + 1-Jh,
and we get

2^A
or

jhj[h+2)y(h+i)+i-jk] j(h+2){j(k+i) + i-jh\'

and the limit of this, when h = 0, is —rz •

156. There are cases in which not only <f>(x) and tyix)

vanish, but all their differential coefficients, and where, con-

duce)
sequently, we are not able to ascertain the limit of T -. . .

For suppose <f>(x) =a~", where u stands for -
i , a and n being

positive numbers, and a greater than unity: we have

,,, . nloea.aT"

9 '(x) = n log a . aT |-^Jir - -^r) •

and so on.

Put - = s, and let t stand for z"\
x

,,, „ Mloga.zn+1

then <f>'{x) = ^ ,

,„, nloga{nloga.z»™-(n+l)zr«}
.

9 (X) — -; ,
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also the value x = corresponds to z = oo . Bat it is easy to

see that every expression of the form

where a, m, n, are positive numbers, and a greater than unity,

is zero when s is infinite. For if we apply to this example
the rule for finding tha value of a fraction which assumes the

form — and differentiate r times successively, r being the

integer next above m, we have

2
m

. k
the limit of —? = the limit of

, , . ,

a1 y (2)

where k is some constant, and ty (z) a function of z which is

infinite when z is infinite. Consequently, all the differential

coefficients of
<f>

(x) vanish when x = 0.

If then we have

<f>
(x) = a-«,

where v stands for — , and b is a positive number greater

than unity, and v also positive, the differential coefficients of

all orders of the two terms of the fraction ^~-{ will vanish
Y(x)

when x = 0, and the limit cannot be found by this method.

In the case of v = n, the fraction becomes

a
this, when x = 0, will be or 00 , according as a is greater or

less than b.

157. The fraction

x

- when x = 0. Put x = - and we hav° —
y

limit of which, when y is infinite, is 0, by Art. 153
;

takes the form - when x = 0. Put x = - and we have ^ , theye
K2
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e
x

1
-

— , or - x e
x

is of course infinite when x = 0.
x x

e
Hence, — is or oo when x approaches the limit 0,

according as we suppose x negative or positive.

158. Form 0x».
Suppose <f>(x) and -^(x) two functions of x, such that

<£ (a) = 0, and ^fr (a) = oo
; it is required to find the limit of

<p (x) TJr(x) as x approaches a.

«/>(*) +&) = &&,

yfr(x)

and as the fraction on the right-hand side takes the form

- when x = a, its limiting value may be found by rules

already given.

7TX

2a

( x\
For example, let $ (x) — log f 2

j
, and yjr (x) = tan

Here <j> (x) yfr (x) takes the form x oo when x — a.

log (2 - -

Then log(2--)tan^= V
"M8 -i 2a , ttx

COt
Ta

The limit of this when x = a, is found by making a; = a in

1 1

which gives

a 2-
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Again, xm (log xf,

where m and « are positive, takes the form x oo , when a;=0

Here ——^— takes the form -
1

(log*)"

when x = ; its limit is the same as that of

xfloga;)-
1

which does not assist us.

If we assume x = e~", then xm (log a;)* becomes

/_ ii» V-

the value of this, when y is oo , is 0. See Art. 153.

The result in this case should be carefully noticed, as it is

frequently wanted in mathematical investigations.

159. Forms 0°, oo
, l".

Let
<f>

(x) and tjr (x) be two functions of x, such that when
x=a, the expression

[+ (x)}*M

assumes one of the forms 0°, oo °, 1"; it is required to find the

limiting value of this expression.

Since
<f>

(x) = e"**'*',

we have
{<f>

(aj)}*w = e*Mi°s*<*).

Now yfr (sr) log
<f>

(x) in each of the proposed cases takes

the form x oo , and its limiting value can be found by
Art. 158, and thus the value of (</> (x)}^ becomes known.

For example, xx
, when x = 0, takes the form 0°

;

x3
- = e*

10**

;

and x log x = 0, when x = 0, (Art. 158)

;

therefore, x" = 1, when x = 0.
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(j\ainx
- I takes the form oo when x = ; also

er- g-ainxlogx

kt t
sin as ,

JNow, sina:loga: = .asiogx;

when x = 0, we have

sin as

= 1,
x

a; log as =0, (Art. 158),

therefore sin x log x = 0, when x -= 0,

/l \ sinx

therefore (-) = 1, when as — 0.

tan 5—

takes the form 1°°, when x = a.

™ , . tan— logfc-^}
The above expression = e 2° v *

2

= e* when x = a, (Art. 158).

160. Form oo - oc .

Let <j) (x) and yfr (as) be two functions of x which become
infinite when x = a, then

<f>(x) — yfr (as)

assumes the form oo — oo ; it is required to find the value of

the expression.

Put
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Thus ev takes the form - when x = a, and its value may be

investigated by Art. 145.

Or we may proceed thus,

then y is infinite unless the limit of . ) , is unity : if the
4> (*)

limit of ,-t-t is unity,
</> (x) J '

<£ (as)
since y =

1

it takes the form

*(*)

For example, suppose y = tan x — sec x
;

then y takes the form oo — oo when x = —

.

Also y = tan x 1 1 — )

\ tan a?/

_ 1 — cosec x
_

cot a; '

this takes the form - , and its limiting value is

cosec x cot x
»— or 0.— cosec x

Fix)
161. The limit of —— when x=co, supposing F(x) to

F'(x)
be then infinite, will be the same as that of —~-> or F'(x).

See Art. 151.

But,
F^ + h

l-
F^=F-(x + 0h).

If x be made to increase indefinitely the limit of the

second member of the equation is F'fa).
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F(x)
Hence the limit when x = oo of —

—

x

= the limit when x = oo of — ~ — .

h

If for simplicity we make h = 1, we have

the limit of—^ = the limit of {F(x + 1) - F(x)}.
x

i

162. The limit of {F(x)}
x when x is infinite, is the same

log J1

(J)

as that of e * .

But, by Art. 161, supposing F(x) to become infinite with x,

losF(x)
the limit of — is the same as the limit of

x

\ogF{x + \)-logF(x),

or of log :

F{x)

Hence the limit when x= x of {F (x)}
x

= the limit of—'_
, \ •

F(x)

Suppose, for example, that we require the limit when x is

infinite of \r- [ .

By the theorem just proved the required limit

= the limit of ^ -z— z*\x+

1

or

= the limit of (
J

= the limit of ( 1 + -

= e by Art. 16.

163. A few remarks may be made on indeterminate frac-

tions involving more than one variable.
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A function of two variables may take the form - , either

when one of the variables remains undetermined and the

other has a particular value, or when both receive particular

values.

As an example of the first case, suppose

c{x2 -a?)

y (x — a) + (x—a) 3 '

if we make x = a we have 2 = 7:, whatever y may be. But

by removing the factor x — a from the numerator and deno-
minator of z, we have

c (x + a)
z = — .

y + x — a

Hence, when x = a, we have

z =— .

y

This case is very simple, and whenever it occurs the ap-
plication of the preceding rules will give the limiting value
towards which z approaches as x approaches its limit.

As an example of the second case, suppose

c (x—a)z=— 7- •

y-b

This fraction takes the form - when x = a and y = b, and

is really indeterminate. For suppose y — b = m(x — a), then

c
z = —

.

m
Hence the value of z is indeterminate, for x and y being

independent m may have any value we please.

164. It may happen that the values which such a function

assumes, although infinite in number, are confined within

certain limits. For example, suppose

c (x — a) (y — b)
z
-^=a-yT(y~=by
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Assume y — b =m (x — a)

;

,, - cm c
therefore z =

m"+l 1m + —m
Here the greatest value of a is when m=\, and z always

lies between - and — - .

2 2

165. We give two more examples.

1st. Let «-!
g - a

C
+c(

,

y
-S";(x - a)p + c {y - by '

this takes the form - when x = a and v = b."

Put x — a,c=h and y—b = k;

., , /r + cfc"
therefore a = tt——=-; •

A"+cA;<

If now we assume k = Aha
, we have

2-
A'

, + c^8A <"'

and, according to the different hypotheses we make respecting

a, to, p, ..., we shall obtain for z finite, infinite, or zero

values.

2nd. Let z =^ a" -#^ f"
+ (a ~^

.

If a; = a, and y= a, this takes the form - . Put a + h and

a + A for x and y respectively ; we shall have

z =
(h - k) a" + k (a + A)" - A (a + A)"

(A-/fc)M

If we expand (a + A)
n and (a + k)', and make some

reductions, we obtain

w (n - 1) _, w(n-l) («-2)z=
1.2

a +
T72T3

a (h + k
) + -
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Hence, putting h and k each zero, we have

n(W -l)

1.2

This result may also be found by examining the limit

towards which z tends as x approaches y, and then the limit

towards which this result tends as y approaches a.

The next Article must be omitted until the student has

read Chapter xi.

166. Generally, if z = V.,
'

. , and both numerator andJ '

_
F(x,y)'

denominator of z vanish for certain values of x and y, the

value of z is really indeterminate, and in fact depends upon
the arbitrary relation we choose to establish between x and y.

Suppose that x—a,y=b, are the values which make z assume

the form - ; and assume that y = i}r (x), where ifr (x) is any

function the value of which is b when x — a.

Thus the numerator and denominator of z become func-

tions of x only ; and by previous rules for ascertaining the

value of a fraction which takes the form -
, we have

(df\ (df\ ,,, ,

z
(dF\ (dF\ ,,. '

x being put = a and y = b after the differentiations are per-

formed. This value is indeterminate, since -^'(x) is a function

which is quite arbitrary.

Eut if [J l
an^

(tt
-

)
D0*n vanisn

>

or if \J) an<^
(tt

-
)
k°th vanish,

then the value of z becomes determinate.
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The value of z is also determinate if

(df) Mf\
\dxl _ \dy)

\dx) \dy

I

™ fdf\ n fdF\ „ (df\ n (dF\ Ak
(i)=°' uh (i)-°- y =o

-

then proceeding to a second differentiation we have

which is generally indeterminate, since i|r (#) is an arbitrary

function.

Example 1. Suppose

log a; + logy ,

S - * + 2y-3 '

a - 1( *- 1
'

(IH =1
'

when ^ 1
'

(fK =1, 'h«y-i.

^ v 1 + ±_ («)
therefore s= rvirr^TT'

which is really indeterminate, and may assume any value

between + oo and — co .

Example 2. Suppose

(^-Ijl-y+l*

Here z takes the form - when x = 1 and y = 1.
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dxj
Also then ( -£) =0 and (-j-) =

3
Hence z has a determinate value, namely, - -

.

(x + l/)*

Example 3. Suppose z= r? ,
-•

Here, when x = and y = 0, we have

(©-»• (f)=». ©=«• (fH
*-

" i + W(x)]~-TTW(*)Y
(i + «)»

-1+1?--*

Here the value of s is indeterminate ; but it will be found
that it is confined between the limits and 2, as may be

2u
shewn by writing the fraction just given in the form 1 + 5 ,

2m
remembering that , is never greater than unity.

167. In solving examples on this Chapter there are

various considerations which will abbreviate the labour of the
operations, as will be seen in the following case.

Find the value of
log (1 +x + ^) +log (l -x + a^)

sec x — cos x
when x = 0.

The proposed expression takes the form - when x = 0. If

we proceed in the ordinary way, we shall find after reduction

that the differential coefficient of the numerator is

2x + 4x3

l + x*+x1 '

and that the differential coefficient of the denominator is

sin a;

cos a;
+ sm x.
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Thus we obtain again the form - , and we may continue in

the ordinary way the process of evaluation. We may how-
ever obtain the result more easily by arranging the fraction

we have now to evaluate thus :

2(1+ 2a;
2
) cos* x x

(1 + x* + x*) (1 + cos
2
x) sin a;'

Here the first factor is not indeterminate when x = ; its

value is then unity. The second factor takes the form -

,

and its limiting value is known to be unity. Thus unity is

the required limiting value of the original expression.

Or the original expression may be evaluated in the follow-

ing manner. It may be put in the form

cos x log (1 +x' + x*)

sin* x

Now cos x = 1 when x = ; we need not then pay any atten-

tion to this factor, but consider that we have to evaluate

log (1 + a? + x')

when x= ; and we may proceed in the usual way to dif-

ferentiate the numerator and denominator. Or if we are

allowed to use the results of the expansions of functions we
have

log (1 + xi + x*) _ x* + x'-\ {a? + xl

Y + 1 (x
i + x*)

t - ...

a — o

sm x
(*— +...)'

_ x> + jxt - ...

~x2 - ix*+...

l + jx' -...

= 1 when x = 0.



EXAMPLES OF INDETERMINATE FORMS. 143



144 EXAMPLES OF INDETERMINATE FORMS.

14



EXAMPLES OF INDETERMINATE FORMa 145

1

28. (o
x — 1) x, x = oo

.

Result log a.

ft \ x

29
' ix

+ V '
x = °° • Eesult e°-

„_ w* sin na; - w' sin wa: (1) »=0.
, , „ T3°- tan^-tanm* ' (2) ,„ = r, «^< *•

(2) Result ri°~
l
(n cos «a; — sin nx) cos' «r.

31.
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43. \'(a
t — xi).cot\-./l U, x = a. Result — .

44.
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1

56. \
l^Y, x =oo. Result 1.

57. Qgrf±lL^, ,_,. Result l
sin* (x — 1

)

ft

58. Shew that when x is infinite —-=• is infinite or zero,

according as wi is greater or less than n ; a and b being

both greater than unity.

59. Shew that when x is infinite

that m = — and -=- = ——, when x = ; and that u =
c arc 2c

and -=- = when a; = oo

.

ax

L2
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CHAPTER XI.

DIFFERENTIAL COEFFICIENT OF A FUNCTION OF FUNCTIONS

AND OF IMPLICIT FUNCTIONS.

1C8. Suppose u a function of y and z, and y and z them-

selves functions of x, it is required to find -7- . This of course

might be obtained by substituting in w for y and z their values

in terms of x, by which substitution u becomes an explicit
/Til

function of x, and -3- can be found by previous methods.

But it is often convenient to have a rule which gives -3-

without requiring the substitution for y and z. To this rule

we proceed.

. 169. Suppose u =
<f> (y, z),

where y and z are both functions of x. Let x become x + Ax,

and in consequence let y, z, and u, become respectively y + A«/,

z + Az, and u + Au. Then

Am =
<f> (y + Ay, z + Az) -

<f> {y, z)

= 4> (y + Ay, z + Az) -
<f> (y, z +Az) + <f>{y,

z + Az) -
<f> (y, z)

;

therefore
Au -^ +^ z +^z)-'t>(V' z + Az

) Ay
Ax Ay Ax

${y,z + Az)-4>{y,z) Az
+ Az Ax'

Now let Ax and consequently Ay, Az, and Au, diminish

without limit ; then
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the limit of -r— is -.-

,

Ax ax

the limit of -J*- is -J?-

,

Ax dx

the limit of -r— is -,- .

Ax ax

The limit of * [y' Z + A'> ~ » & z)
is the differential

Az
coefficient of

<f> (y, z) or u, with respect to z, taken on the
supposition that z is the only variable ; and may therefore be

denoted by t- .J dz

The limit of *(y +
Ay,« + A«)-0(y,« + A«)

would; u^
Ay

did not change, be the differential coefficient of <f>(y, z + Az)
with respect to y. But as Az diminishes without limit with
Ay, the limit is the differential coefficient of tj> (y, z), with
respect to y, taken on the supposition that y is the only

variable.

We have then finally

du _ du dy du dz

dx dy dx dz dx

'

du
170. In this result ,- denotes, as stated, "the differential

dy
coefficient of u, taken with respect to y, supposing y alone to

vary." It is not impossible that the reader may be inclined

to say, " But y and z being both functions of x, if y varies,

z must vary too, how then can I make the supposition that

y alone varies?" His own further reflexion will probably

remove the difficulty, if such it be. Should he however be
unable to satisfy himself, it may be suggested to him that

we do not make the supposition that y alone varies as a

final supposition. We allow for the variation of both y and
z, but it is convenient for our purpose to consider these varia-

tions one at a time.

It is usual to write ( ,
J
and

( t-) , instead of ,- and -,-
,

the brackets serving to remind us of the suppositions to be
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made in finding the values of these differential coefficients.

Hence the above equation should he written

du _ /du\ dy /du\ dzdu _ (du\ dy /du\ dz

dx \dyj dx \dz ) dx
'

du\_,
dz)~'

Of course the brackets rnay be omitted, and indeed frequently

are omitted, provided we can feel certain of remembering the

conditions which they are designed to express. The beginner

will do well to use them, although as he advances in the

subject he may be able to dispense with them.

171. For example, let u = z
2 + y" + zy,

z = sin x,

then
(|)

= 3^+Z >

2z+y,

dx

dz
-=r = cos x

;

dx

therefore -5- = (3jr*+ a) e
x+ (2z + y) cos x

= {^e^+ sin x) e* + (2 sin x + e') cos x

= Zi*+ e* (sin x+ cos x) + sin 2x

;

and this value is of course precisely what we obtain if we
substitute in m for y and z their values in terms of x, thus

obtaining u = e
3x+ e

x
sin x + sin

8
x, and then differentiate with

respect to x.

172. An important case of the general proposition is

obtained by supposing z = x so that -y- = 1. We have then

du fdu\ dy (du(du\ dy
+

/a

Kdy) dx \adx KdyJ dx \dx



OF A FUNCTION OF FUNCTIONS. 151

Here we camiot dispense with the brackets or some equi-

valent notation,
( t- ) denoting what would be the differential

coefficient of u with respect to x, if y were not a function

of x, and -j- denoting the actual differential coefficient of v.

with respect to x, when y is a function of x.

173. For example, let u — tan"
1
(xy),

then 2 2)xy\dx) 1+ a

\Jy)~l+xt

y
i '

dy

dx

therefore
du _ e"x+ y
dx 1 -1- afy*

_ e
x
(l + x)

which of course is what we obtain if we differentiate tan"
1
(xe*)

with respect to x.

174. Suppose u = (j>(v, y, z) where v, y, z, are each func-

tions of x. We have, as before,

Am =
(f>

(v + Av, y + Ay, z + Az) — <j> (v, y, z)

= (/>(« + Av, y + Ay, z + Az) -<b(v, y + Ay, z + Az)

+ <f>(v,y + Ay, z + Az) - t\> (v, y, z + Az)

+
<f>

(v, y, z + Az) - $ (v, y, z)

;

Aw _ <f>
{v + Av, y + Ay,z + Az) —

<f>
(v, y + Ay,z + Az) Av

Aa;
_

Av Ax

<f>(v,y + Ay, z + Az)-<j> (v, y,z + Az) Ay
+ Ay Ax

<f>
(v, y, z + Az)-$ (v, y, z) Az

+ Az Ax

'
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Proceeding to the limit, we obtain

du /du\ dv fdu\ dy fdu\ dz

dx \dv) dx \dy) dx \dz) dx'

The process may be extended to the case in which w involves

more than three functions of x.

175. Examples may occur more complicated in appear-

ance, but essentially involving the same principles as those

of the preceding Articles. Suppose for instance

u = <$>(v, y, z, x),

v=-f(y, z,x),

' z = F(x),

so that u could, by performing the requisite substitutions, be

made an explicit function of x : it is required to express the

differential coefficient of u with respect to x, without pre-

viously making these substitutions.

du _ fdu\ dv /du\ dy /du\ dz /du

dx ^dvj dx \dyj dx \dz) dx \dx,

dv _ [dv\ dy fdv\ <fo fdv\

dx ~ \dy) dx \dz ) dx \dxj
'

!=/», %,-rv,

H-S-(£)i(g)/-«+©^ + (£

-©/'<*> + (£>Me)-
176. The same suppositions being made as in Art. 169,

it is required to express -3—, . We have

du _ fdu\ dy (du\ dz^

dx ~ \dy) dx \dz ) dx

'
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Now (-T-) is itself a function of y and z. If we denote it

by v its differential coefficient with respect to x will be

/dv\ dy /dv\ dz

\dyjdi
+

{di)dx''

which may be written

/(FiA dy f d2
u \dz

[dy1

) dx \dz dy) dx
'

The differential coefficient of -^ with respect to x is —-„.
dx r dx2

Proceeding in the same way with the term

(du\ dz

dzjdi'

and remembering, (Art. 134), that

cPu \ _/diu

dy) \dy dz,

we have

d?u

d.

[dzj

• 134;.

/ d*u \ = / d*u \

\dz dy) \dy dz)
'

^ = fd^) [
dlX 4. 9 (

&u
\ ^ <k (d^\ (d*\ 2

x* \dtfj {dx)
+

[dy dz) dx dx
+

[dz*) \dx\J

/du\ <Fy fdu\ d?z

\dy) dx% \dz ) dx*

'

If z = x, we have -,- = 1, -n = ; thus
dx dx

cPu = /*u\ /dy\'
+ 2 (

d?u \ dy /<Fu\

dx2
\dy'J \dx) \dy dx) dx \daf)

,du\ efy

177. Hitherto in this Chapter we have given methods
which, although often convenient, are not absolutely neces-

sary, as in all cases, by effecting the required substitutions,

we may obtain an explicit function of x, and differentiate it

by known rules. But the case we now consider is one in

which a new method is frequently indispensable.

Let
<f>

(x, y) = be an equation connecting the variables x

and y : it is required to find -y- . If the given equation can
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be solved so as to give y in terms of x, say y = •^•(x), then the

differential coefficient of y with respect to x can be found by
previous rules. If x can be expressed in terms of y, we can

determine t- and then -&-
, since -j- x -;- = 1. But as it is

ay ax ay ax
often difficult, and sometimes impossible, to solve the given

dti
equation, it is necessary to investigate a rule for finding -£-

which does not require this operation.

Put u for
<f>

(x, y). From the given equation y is some
definite function of x ; hence

/du\ dy (du\

\dy) dx \dx)

is, by Art. 172, the differentia] coefficient of u with respect to

x. But v is always zero, and therefore so also is its differential

coefficient with respect to x. Hence

\dy) dx \dx)

'

/du\

therefore

du\

dx)

dx fdu\

'

/du\

178. This important result may also be obtained thus,

which is in effect combining into one Article portions of the

preceding pages. Let

<f>
(x, y) = 0.

Suppose x to become x + Ax and y to become y + Ay, so that

<f>
(x + Ax, y + Ay) = 0.

Hence (/> (x + Ax, y + Ay) —
<f> (%, y) = 0,

and <p (x+Ax, y+Ay) —<f>(x+Ax, y) +<j>(x-rAx,y) — <j)(x, y)=0.

Divide by Ax, and we have

4>(x+Ax, y+Ay)-<j>{x+Ax, y) Ay <f>(x+Ax,y)-<f>{x, y) =Q
Ay Ax Ax

This equation, being always true, remains so when Ax and

Ay are diminished indefinitely.
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The limit of *(« + ***)-*(*. y)
, ^hen Ax diminishes,

is the differential coefficient of <f> (x, y) with respect to x,

formed on the supposition that x alone varies, and if we put u

for <£ (x, y), this limit may be denoted by
(
-j-

)

.

The limit of <H* + A*.y + Ay)-<H* + A*,g
) would> if

Ay
Ax remained constant, be the differential coefficient of

<p(x + Ax, y) with respect to y, formed on the supposition that

y alone varies. But as Ax diminishes without limit when
Ay does so, the limit is the differential coefficient of u with
respect to y, formed on the supposition that y alone varies.

It may be denoted by \-j-) .

Ax dx'
The limit of t^ is -j- . Hence finally

ay) dx \dx!(:

179. For example, suppose a*y* + Vx* — a'l* = 0.

Here u = a*f + 6V - a%\

therefore cfy -j- -f tfx = 0,

therefore -?- = 5- (1).
dx ay

Since y = - V(a* — **) from the given equation, we obtain
a

directly

dx a</(a*-x*) v y

When in (1) we substitute the value of y in terms of x,

the result agrees with (2).
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In this case we can verify our new rule, by comparing its

results with those previously found. In more complex

examples, such as

x5 - ax3
i/ + bx*y2 - y* = 0,

we can find -*- only by the new method
;

putting u for x" - ax"y + bx2y' — y', we have

(^) = 5.r
l - 3ax*y + 2bxy\

ffl=-ax> + 2bx*y-5y'-,

therefore
dy _ 5x4- 3ax*y + 2bxy*

dx ~ "by" - 1bx*y + ax3

180. We shall now investigate the second differential

coefficient of an implicit function.

From the equation

u or </> (x, y) = 0,

fdu\

we have deduced -j-= rr (1)

:

ax /du\

\dy)
d*y

it is required to find -j-^

.

We observe that I -j-
J
being a function of both x and y,

its differential coefficient with respect to x must be found by

Art. 172. If we put v for (t-J, the required differential

coefficient will be
dv\ dy /dv\

dy) dx \dx)
'

dy

Similarly, denoting (t-) by w, we have for its differential

coefficient with respect to x,

dw\ dy fdw\

dy) dx \dx)

'
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Hence, from (1),

ayJ ax \dxj) [\dy / dx \dxj

dx2
w'

.(2).

VT /dv\ (d*u
Now [nrwj'

the latter symbol denoting that u is to be differentiated twice

with respect to x, on the supposition that x alone varies; also

dv\ _ I d*u \

dy] \dy dx)
'

the latter symbol denoting that u is to be differentiated with

respect to x, supposing x alone to vary, and the result with

respect to y, supposing y alone to vary. Similarly

dw\ I d 2
u

\dx) (,\dx dy)

'

/dw\ _ /d
2
u\

{dy-)-[dy*)-

Hence, substituting in (2), we have

/du\ (/ d*u \ dy (d*u\) _ /du\ \(d*u\ dy I d?u \\
[d^J \\dy~dx) dx

+
\dx~y]

~ \dx) \W) dx
+

[daJdyj]

da? fdu

w
(3).

If we substitute in (3) the value of ~- given by (1), we

haVe
'
SmCe

{djdxj " [dx-dy) * ** 134>

UsV [dyj
2
\dx dy) [dxj \dy)

+
\dy'j \dx)__

\dy)

y
dr'

~
(du\ 3 •• (4^

w
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181. This result may also be found from Art. 176, by

d"u
supposing u = always, and therefore -r-; = ; or indepen-

dently thus.

From u =

it follows that '

'
' +©- <"•

dy) dx

Denote this result for the sake of shortness by

©£+©-• *•

which result, expressed in terms of w, is

U?J + 2 (s^J dx
+
\df) \dx)

+
[dy'j d?

=
° • (3) ;

as ~ is already known, this equation will furnish -=-=
.

Equation (1) is frequently called the "first derived equa-

tion," or " the differential equation of the first order ;" and
equation (3) is called "the second derived equation," or the
" differential equation of the second order ;" the equation u =
being called the " primitive equation."

182. Should the reader succeed in correctly deducing for

himself the important equation (3) of the last Article, he may
omit the next two Articles, as it seems unnecessary to direct

his attention to difficulties he might have felt, or mistakes he
might have made. If however he has failed in his attempts,

he may compare his process with the following.

In (1), put p for -j- , so that v stands for

(du\ (du\

\Ty)P + \Tx)-

Hence (%) = (*$-) p + (f) (f) + (g) ,
\dx) \dxdyj r \dy) \dxj \dorJ

{dy~J
~ \dy) P

+
\dy) [dy]

+
[dy dx)

'
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Thus (2) becomes

+ (^)^ + (|)(l) + (S)=°'
or

£)+'(&)'+(SW(*H©'+®}-*
B-®» + ®-£.tl-l.S.lA*l«).-dwI*

this simphfication we obtain the required result.

A very common mistake is to omit the brackets in

it)p
+ d)'

and thus
(i)

is writtm
d7'

and there

remains a superfluous term, namely *
, or as it has perhaps

been written by the student, ,
"_.

.

183. In Art. 182 we proceeded very strictly according to

the literal requirements of the rule involved in equation (2) of

Art. 181. We might have reasoned thus.

We have merely to express symbolically the fact, that the

differential coefficient of

/du\ dy (du\

\dy) dx \dx)

with respect to x is zero.

Now the differential coefficient of ( -j- 1 with respect to x

is
/ d*u \ /dV\ dy

#

\dx dy) Kdy^j dx '

d/u Cut/
and the differential coefficient of -^ with respect to x is -5—.
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Hence the differential coefficient of ( -5- ) -M- is

[(
d*u

\ .

(M\M&. (*±\ <?%_ n )

\\dxdy)^\dyV dx\dx^\dy) da?
l ;

'

Also the differential coefficient of [3- ) is

\dydx) dx \dx?)
K >'

Collecting the terms in (1) and (2), we have

/<fw\ / d2
u \ dy /ffu\ fdyV (du\ dfy _

\dxV
+

[dx dy) dx
+
\dyV [dx)

+
\dy) dx*

~

184 It is not necessary to proceed further with the
successive differential coefficients of implicit functions, as the
equations become too complicated to be often used. The
reader may, as an exercise, obtain the following result from
equation (3) of Art. 181, by either of the methods we have
used in Arts. 182 and 183

:

m\
3(fip)

d/+3 (*)m + (*§ (W\dx3
J \dx l

dy) dx \dxdy J \dxj \dy3
/ \t

\\dxdy) \dy J dx) dor \dy) dx3

We may observe that it is often found convenient to use a
certain abbreviated notation for partial differential coefficients.

Thus if <f>{x,y) be any function of a; and y, any partial differentia]

coefficient of the function may be indicated by the letter
<f>,

with accents above corresponding to the number of differen-

tiations with respect to x, and with accents below correspond-

ing to the number of differentiations with respect to y. For

example, <£>" will indicate
( )j ) > and 4>> wu^ indicate

(d*<f> (x, y)\ ,

dxdy

We m
Thus with the present notation the equations (1) and (3) of

We may also use y for -j- , and y" for -y-|, and so on.
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Art. 181, and the equation which may be obtained from (3)

will be expressed respectively as follows

:

*'+*y=o,
4>" +a*,y + *,y

, +*y'-o
>

f"+ 8*;y+ s^y* + *„y + 3 (</>/+ <£,y) y + </>y = 0.

185. Suppose the two equations

/(«, y, «) = 0,

.Ffoy, z)=0,

exist simultaneously, in which a; is the independent variable

and y and z dependent variables. From the two given equa-
tions we may eliminate z, and thus find an equation connect-

ing y and x. Hence -j- may be determined. Again, from

the two given equations we may eliminate y, and thus find

an equation connecting z and x, whence -j- may be deter-

mined. In cases where the elimination is tedious or imprac-

ticable we may proceed thus.

Let u denote fix, y, z) and v denote F (x, y, z). Since y
and z are functions of x, the differential coefficient of u with
respect to x is, by Arts. 172 and 174,

(du\ (du\ dy (du\ dz

\dx) \dyj dx \dz) dx'

and since u always = 0, we have

•-©+©£+©£ <)•

from which we find

fdu\ fdv\ (d>v\ (du\

dy \dx) \dz) \$x) \dzj .

dx~ /du\ fdv\ _ 7dv\ /du\ ^ ''

[dy) \dz) [dy) [d^)

T. D. C. M
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(dv\ fdu\ _ (du\ /dv\

dz _ \dx) \dy) \dx) \dy)

~v\ /du\ /du\ rdv

z) \dy) \dz) \dy

_..... (4).
dx fdv\

'"'"'
'

~'~ x '"'"

dz)

186. By differentiating equations (1), (2) of the last Article

with respect to x, we obtain

fd*u\
2
/_£u_\ dy

+ 2
f£u_\ dz_ td?u\ fd_yY

\du?) \dxdy) dx \dxdz) dx \dy*)\dx)

t d'u \ dy dz fd*u\ /dz\" fdu\ d2

y (du\ d 2
z _

\dydz) dx dx \dz2

) \dx) \dyl da? \dz) db? '

(^l
uN

) +2 (-—1^ + 2 (Si.) *+(**) (&)'
\dx2

) \dx dy) dx \dx dz) dx \dy
2
J \dx)

d'v \ dy<k /d?v\ /dzV rdv\ <Py fdo\ d 2
z _

dydz) dxdx \dz*)\dx) \dy) da? \dz)dx*~
+ 2

d"
From these equations we can deduce -~^ and -=-= , which

dor dxr

may also be found by differentiating equations (3) and (4) of

the preceding Article.

187. Suppose we have n equations connecting n + 1 vari-

ables x, y, z, (. Let the equations be

F
%
(x,y,z, t)=0, sayM

x
= 0,

F
2
(x, y, z, t) = 0, say u

2
= 0,

Fn (x, y, z, t) = 0, say wn = 0.

From these equations all the variables but one may be
considered functions of that one. If x be the independent

variable, we have by differentiation, as in Art. 185,

=
(*fi + (*») §L + (%>)* + + ft) * ,\dx) \dy)dx \dz J dx \dtjdx

o-(*p)+(*5.)^ + (*s)*+ +m
\dxj \dyj dx \dzj dx \dtJ

dt

dx'
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\dxj \dy I dx " \dtjdx'

from which n equations we can determine the n quantities

dy dz dt

dx' dx "' dx'

188. Suppose </> (x, y, z) — to be the only equation con-

necting three variables, so that z may be considered an im-
plicit function of the two independent variables x and y : it

is required to find -^- and ~r-

.

ax dy

dz
By -j- is meant the differential coefficient of z with respect

to x, supposing^ constant, and by -7- the differential coefficient

of z with respect to y supposing x constant. Theoretically

we may from the given equation find the value of z in terms

of x and y and then effect the differentiation by common
rules; (see Art. 131). But to avoid the difficulty of solving

the given equation we adopt another method. Suppose y
constant, so that we have two variables x and z, and let u
stand for <f>{x, y, s), then by Art. 178

du\
.
/du\ dz

dx.)+©£- <» ;

where (— ) stands for the differential coefficient of u taken
\dxj

on the supposition that x alone varies, and I -j-
J

for the dif-

ferential coefficient of u taken on the supposition that z alone

varies. Similarly

£)+©*- (2) -

d* dz
Equations (1) and (2) determine -^- and ^-

.

We may determine -7-^ and -p by the method of Art. 180,

M2
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or by that of Art. 181. If we adopt the latter method, the
two equations we obtain are

fd'u\ I d'u\dz ((Tu\ fdzV fdu\ d*z _WW +
\dxdz) dx

+
\df) \dx)

+
[dz I dx* ~ '

WW +
\dydz) dy

+
\dzV [dy)

+
[dz ) dtf

~

d2
zWe can obtain an equation for finding , , by differen-

tiating (1) with respect to y, or by differentiating (2) with

respect to x. We thus deduce

/ d 2u \ / d 2
u \dz( d2u \ dz /d

2
u\ dz dz

\dxdy) \dzdx) dy \dzdy) dx \dz*)dydx

+
{du\d>z =0© dydx

189. Suppose we have two equations connecting four

variables ; for example,

/ («, x, y, a) = 0, say u
x
= 0,

F(y, x, y, z) = 0, say u
2
= ;

from these equations v and z may be considered functions

of the independent variables x and y. If we eliminate v we

obtain an equation connecting z, x, and y, so that -, and -j-

may be obtained by the preceding Article ; and similarly

if we eliminate z we may find -=- and -,-
. Or we may pro-

ceed thus : from the equation u
1
= 0we deduce, by Art. 174,

(du\ (du\ dv (du\ dz

\dx) \dv J dx \dz ) dx '

and from the equation u
t
= we deduce

(du
t
\ (du\ dv (du\ dz_

\dx)
+

\dv J <fcp [dz J dx '

from which y- and -y- can be found.
ax ax
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Similarly, from w, = and », =0« deduce

\dyj \dvj dy \dz) ay

and (P) + (P)
d
T + (P)i

S = Q'

\dy ) \dv J ay \az J ay

from which -r- and -j- can be found.
dy dy

In such equations as those in the present Article it is

df df dF . ,
f

rfu,
very common to -write -f- , -7- , -j- , • • • , to denote —~

.J dy dv dy dy

du^ du
3

dv dy '

190. If values of x and y which satisfy an equation u =

involving x and y, also make ( -j-) and
( j-l vanish, then

($1

If we apply the method of Art. 145, we have

fdu\ (d%
u\ ( cPu \ dy

, ,. . „ \dx) \dx*J \dxdy) dx
the limit ol

,
= the limit of „ ; J\ ; ,

(£) (
*«

) + (p\ f\dy/ \dx dyj \dyy ax

the numerator and denominator of the second fraction being

respectively the differential coefficient of ( -=- ) and of
( y

with respect to x.

fdu\

-r- , which = 7— , assumes the indeterminate form -
dx fdu\

We have then

dy _ \.dx'J
"*"

\dx dy) dx

/£u\ f d*u \ dy

\dx'J \dx dy) dx

I d'u \ /<Pu\ dy

\dx dy) Kdy
1
/ dx

dx~ : ~

~ " (1) '
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In this expression we must substitute in
( j-^J , ( , -, ) )

and (-j-j) , the values of a; and y under consideration, and thus

we obtain a quadratic for finding — . This quadratic is

y(D +2yi +y = ° (2);

equation (2) agrees with equation (3) of Art. 181, remem-

bering that by hypothesis I -j-
J

= 0.

191. Should the values of x and y we are considering in

addition to making w = 0, (^-) = 0» (
j"

)
= °> a^s0 ma^e

(s?r°- fe*H (s^J = °- then
.

the value of
di

given in equation (1) of the preceding Article also takes the

form -. Hence, applying again the Tule for finding the

( d?u \<Fy

.(1).

limit of such a fraction, we have

(*2\

+

2 (
d*u

\&+

(

d°u yrfy\'
i

(.

dy _ \dx'J \dx*dy)dx \dxdyiJ\dxJ KdxdyJ dx2

dx~~ / d*u \ / d*u \dy (d»u\(dyV /d'u\d'y

\dx2dy)
+

\dxdtf) dx
+
\df) \dx)

"*" WyV <2x
2

Since
(j—j-

J
an(i (ji) vanish, we obtain from (1)

{dyV \dx)
+ 3 WdyV (dx)

+ 3
\dxty) dx

+w)= °'" (2) '

where in all the differential coefficients of u we must sub-
stitute the values of x and y under consideration, giving a

cubic equation to determine ~ . Compare Art. 184.
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It must be observed that this method is liable to an

objection. We assume that , , -*% and -y-
s

-=-*, vanish
ctsc it 'if ax ti if it j'

because in each case one factor vanishes ; if however -7* be
ax

d'u (Pv
infinite, it does not follow necessarily that -j^ and

-n -r? vanish. See Art. 380.
ay ax

192. Example, y* + 3a'y - 4aVy - aV = 0, or u = 0.

(^)=V+6aV-te»a:;

. , - dy 4a*« -*- 2a"x 2a*y + a'x
therefore -— =—,

*
., r =—5—^— =— .

dx iy3 + 6a'y — ia'x 1y + 3a*y - 2arx

Here x = 0, y = 0, satisfy w = 0, and make j- assume the

form - .

Differentiate both numerator and denominator, and we have

f = the limit of ±-<
d* W + 3a<)

d
£-2a>

= l ultimately.

3^-2
ax

before ' .(g)'-^-,-.,

therefore t- = —,— •
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Again, suppose ayi — bx*y+xl=Q to be the given equation.

Then $£) = 4a;
8 - ibxy,

,, „ dy Ax' — 'ibxy
therefore ¥- = -j—~—-

—

% .

ax bx — Bay

This value of -¥- takes the form - when x and y vanish.
dx J

Hence, differentiating the numerator and denominator, we
have

, \2x
2 -2by-2bx-^-

dy
_

dx

dx „, " dy '

2bx — &ay %-

when x and y are made = 0.

Again, we have the form -
. Hence, differentiating again,

, 24a- 4^-26*^
dy dx dx

2h - 6a U)-^di
d"y

x and y being made each = 0. Thus assuming that x -~

and y --.-

, vanish, we have

fkb -eam\ = -tb
d
/,dx \dxJ )
dx

from which
j
= ®'

dx V a

193. It may be noticed that equation (2) of Art. 190

differs from equation (3) of Art. 181 only in the omission of
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dy
, were
dx

the term (j- )-r^- This term would not occur if

d*y
a constant quantity, for then -j4 would be zero. Hence

equation (2) of Art. 190 may be derived by differentiating

the equation

/du\ /du\ dy _
\dxJ \dyj dx '

du
with respect to x and treating -4- as if'it were a constant.

Similarly, equation (2) of Art. 191 may be deduced from

equation (2) of Art. 190 by differentiating with respect to x

and treating J£ as if it were a constant.

194. If in equation (2) of Art. 190 we have (j-i) = °,

then

dy _ \dx2
)

dx / d*u \

\dx dy)

as owe value of -£-. The other value of -4- will be infinite,
ax ax

for we know from Algebra that if we have a quadratic

equation aud the coefficient of the highest power of the un-

known quantity gradually diminishes without limit, then

one of the roots simultaneously increases without limit. See

Algebra, Chapter xxii.

195. The value of -j- , when the values x = 0, y = 0, make

it assume an indeterminate form, may often be more simply

found thus. We have only to seek the limit of - as x and y

diminish without limit ; this is obvious from the meaning of

-r , or from Art. 145 ; it will be seen too if we refer to the

geometrical illustration of Art. 38.

Example. y* + 3a*if — ±a2xy — aV = 0.
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Hence, tf
(tj +Ba*(£) -4a'^-a° = 0.

If now - have any finite limit, the term y'(-) will vanish

when y = 0, and we have for finding the ultimate value of -

the equation

therefore - =—=-—

.

x 3

If - have an infinite value, then - has a value zero

:

.

x
.

y
putting the given equation in the form

y+3a2 -4<z2 --«8

(-)

2

=0,

we see that - = ultimately would not satisfy it Hence -

y £
has not an infinite value.

Again, suppose ay* — bx'y + x* = ;

therefore a (%
J
- b (&

J
+ x= :

when x vanishes, we have
\
a

{ )
— b> = 0;

therefore - = ultimately, or - = + . /-
,

Again, suppose x* + aa?y + bxy 1 — y* = ;

therefore x + ay- + b (V-\ -y(~) = 0.
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The finite limiting values of - are given by

a* + 6(*)-0;
x \x/

therefore * =0, or " — _ _

.

a; x o

And since the given equation may be put in the form

"©'•©+»©-'-*
we see that - = ultimately satisfies it

;

therefore - = oo ultimately for another value.

Hence the limits of - are 0, or — T , or oo

.

x b

This method is free from the difficulty which is pointed

out at the end of Art. 191.

If we wish to ascertain by the method of the present Article

the value of -j- at a point for which x= a,y = b,vre may put

a + x for x and b + y' for y in the equation which connects

x and y. We shall then have to find the value of -jf-, when

x'=0 and y'= ; and this may be ascertained by the method
shewn in the preceding Examples.

EXAMPLES.

S-JT
1. If u= . / i"i

—^-
2 ], where z and y are functions of x,

nnd -f-

.

ax

2. If u = sin""
1
- , where z and y are functions of x, find j-

.
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3 Ifv^ = axm & = _??_. .a dx x (1 + «#)

17 ax x — xy log a;

5. If (a + 3/)

8
(6' - f) + (x + aftf = 0, find g .

6. If sin (xy) = twa;, find -f •

7. Given w
3 + a;*-3ajM = 0, shew that -j-f = - ,

aa
"^,,

"* *
afc

a (y'-ax) 3

8. Given x4 + 2ax2

y = ay9
, find ^ and -j-2 , and write down

the third derived equation.

9. If y = <£ (x, y, u) and ty (x, y, u) = 0, find -=- .

d\jr. d<f> dyjr dcj) d"\jr

p n du _ dx dy dy dx dx

dx dip- d<f> d\jr d4> dyfr
'

du dy dy du du

10. If u = <j> {x, y), and u = % (x), find -j-

.

*~«t {*'<*>-©} =©*<*>•

11. If u = ax' + >J(secxy), find -^ , (1) when x and y are

independent, (2) when x + y = a.

12. If a1" + V(sec xy) = 0, find -£_

.

j
dy _ y V(sec xy) tan xy + 2ax"yxr

'1
log a

dx x V(eec xy) tan xy + la?a? log a log a:
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13. If x* + 2ax*y - ay" = 0, shew that -^ = 0, or ± V2,

when x = and y = 0.

14. If xl - ay' + 2axy* + 3ax*y = 0, shew that -j- = 0, or - 1

,

or 3, when x = and y = 0.

15. If ax* + x*y — ay" = 0, shew that
-f-
= h when x =

and y = 0.

16. If o.-y = (a
2 - y) (b + 3,)

1
, shew that ^ = +

fc

_ ,

when a; = and y = — b.

17. If (y
1 - «) (a: - 1) (a -

|)
= 2 (jf + x° - 2x)«,

find -j- when a and y vanish, and when x = 1, y = 1.

^Mte ^(L9)and---i-±
6̂
.

18. If ^-^ + 3x^-2^=0, find ^ when x=0.

Result 1, 2, or — ^

.

19. Find ^ if «'+ x* + y* + z* = c\
dx

log (ay) +f = a''

"© + za; = 6
!
.

Result uy= y
)

y
! +

)
- X.

dx x(x + y) x(xz + l)

20
-

If
a'
+ p + 7- 1=0

>
find s, s^- ^ a?-
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CHAPTER XII.

CHANGE OF THE INDEPENDENT VARIABLE.

196. In Art. 60 we have shewn that

dJL=L (1)

dy

and in Art. 63 we have shewn that

dy = dy dz^

dx dz dx

and we now proceed to some extensions of these formulae.

Given x and y, both functions of a third variable z, it

is required to express the successive differential coefficients

of y with respect to x, in terms of those of y and x with

respect to z.

dy

dz

dy dy

d 2

y _ddz_<ldz^dz^, . .

dx' dx dx dz dx' dx ''

dz dz

d*y dx d*x dy

dz' dz dz* dz <&

dx\' 'dx®
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d*y dx d*x dy

dz* dz dz' dz . ...=
7dZ? ^ <*>

[dz)

d'y dx d'x dy

a • ds

y _ d dz* dz dz* dz dz

°
1

' dxs ~ dz /dx\* ' dx

\dz)

fd*y dx _ (Px dy\ /dx\" /dx\* d'x fd'y dx _ d'x dy\

_ \dt*dz l?d~zj\d^)~\Tz)dJi \dt'di~dii dz) dz

/dx\*
~~ " dx

\dz)

fd
3
y dx d3x dy\ dx d'x /d'y dx d'x dy\

\dz* dz dz3 dz) dz dz" \dz* dz dz* dz)

TOUR
'

\dz)

Similarly we might express -j 4 , -55,

This process is called "changing the independent variable

d'v
from x to z;" since in -r4 the independent variable is x,

d'y dx d'x dy

but in the expression j
," the independent va-

\dz)
riable is z.

197. Suppose in the preceding Article we put z =y.

»•« !-' 3-»- 2-*
dx _dx d'x _ d'x

Tz~Ty' dl'ljf'
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and thus ~ = -7-
,

dx dx

dy

dx2 ~fdx?'

\dy)

dx <Fx _ (d*x\
2

dljdy
3 WW

dx3

/^?Y

198. The formulae of Art. 197 may also be obtained

directly thus

:

dI = ±.
dx dx'

dy

therefore -y4 = -j- -r-
aar aa; ax

dy

_ d \ dy

dy dx ' dx

dy

<Px d2x
dy* dy _ dy*~

~ (i^\
d*~~ (<fcy

'

\dy) \dy)

d''x d 2x
d'y _ d dy% d dy* dy

dx3 dx /dx\ 3 dy A&A* ' dx

[dy-) \dy)
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fdxV/d'xX*

djf \dy) \dy) WJ

d*x dx /dV\*

d7dy~
6W)

This process is called changing the independent variable

from x to y.

199. With respect to the use of the preceding Articles

we must observe that, as is the case with some other parts

of the Differential Calculus, the student is here acquiring

materials which will be available in some of his following

subjects. Expressions which present themselves can some-
times be much simplified by transforming them in the manner
above indicated ; of this examples will be seen at the end
of this Chapter.

200. The following is an important special case.

d"y
Change the independent variable in x" -r% from x to t,

where x — e\

We have ± (x*
d>] = - (x" ^) -

-

We haVG
dt \

X
dx") dx T dx") dt

-^
dx"

+ X
dx™'

dt\
X

dx")
nX

dx"
X

dx"+l
'therefore -r: (x" -y^ ) - nx" -=4= x"

This result may for the sake of abbreviation be thus ex-

pressed,

--^S-'-S* <•>(I—)'
T. D. C.
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Put n = 1 ; then

\dt
l
J
X
dx~ X

dx>-

But
dy = d

iL
d? = x <ki.

dt dx dt dx

'

'S-fi-OJlF »
Put n = 2 in (1) ; then

(l- 2]x^ = x^-
\dt V da?

X
dx"

or from (2),

"3-(a-)(S-')S <»

Proceeding thus we deduce

'S-{S-Me-M-{i-U »
201. It is often useful in geometrical applications of the

Differential Calculus to have expressions for -^ and -~ in
ox dor

terms of 0, supposing

x = r cos )

# = r sin 8 )
* ''

Since y is by supposition some function of x, it follows
from (I) that an equation subsists between r and 8, so that
r may be considered some function of 8.

dy . a dr

dy d8
Sm^ + rC°sg

, , ,

-j3 cos ffjj-r sm 8
do do

dv
_,, , sin 8 -ja 4- r cos ,„
&y _d_ d8 _ d8

dx1 d& n dr . n
' dx

'

cos 8 -jn— r sin 8
do
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The numerator of this fraction is

(sin# j^ + 2 costf-™ — rslnflj (cos 8 ^. — rsmQj

— (cos 0-t™ — 2 sin 8 -*% — r cos 8) (sin 8^ + r cos 8

j

and the denominator is

(cos 8 -Tn — f sin 8)

.

„ , , . d°y _ \d0)
r
d0>

Hence we obtain ^ =
,

.

dx2
/ a dr .\

3

/cos 8 -tq — rsin 8)

202. Let u be a function of the independent variables

x and y, say m=/ (x, y) ; and suppose x and i/ functions

of two new independent variables r, 6, so that

x^F^r.ff),

y = Fa
(r,9).

It is required to find the values of -=- and -7- in terms of^ dx dy
differential coefficients of u taken with respect to the new
variables.

If for x and y we substitute their values in terms of r
and 8, we make u an explicit function of r and 8. Now, by
Art. 169,

du _dudx du dy

dr dx dr dy dr

'

du _ du dx du dy

d§~dxd8 +
dyd0'

From these equations -=- and -=- can be found.^ dx dy

203. If the equations which connect x, y, r, 8, instead of

those in Art. 202, are given in the form

r =F
l
(x, y),

= F
t
(x,y),

N2
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we may use the formulae

du _du dr du dd

dx dr dx dd dx

'

du _dudr du dd

dy dr dy d6 dy

'

204. If the equations -which connect x, y, r, d, are given

in the form

F
l
{x,y,r,0) = O (1),

F,(x,y,r,ff) = (2),

, . ~ , ., , - dx dx dy dy
we may, in order to find the values of -j- , -tt,, S , S,J dr' dd' dr dd'
required by the formula? of Art. 202, by successively eliminat-

ing y and x from (1) and (2), obtain explicitly the values of x
and y in terms of r and d. Or, by Art. 189, we may find

-77; and -;? from the equations
dd dd ^

(dj\\ fdF,\dx fdFl
\dy_

\dd J
+
\dx J dd

+
\dy J dd~

V'

\de)
+
\dx) dd

+ \dy)dd~ '

doc du
and use two similar equations for -y- and -2-

.^ dr dr

205. Example. u—f{x,y),

x = r cos d,

y = r sin d
;

dx . . dy n
here -33 = — r sm d, S = rcosd,

dx „ dy . n
-5- = cos d, -£ = sin 8.
dr dr
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Hence, by Art. 202,

therefore

du n du , . n du

dr dx dy

du . n du , a du ,^ = — r sin a -=- + r cos o -3-

;

a0 aa; ay

dw n du 1 . n du
i- = cos a -. sin a -jn ,

dx dr r do
L •(!)•

du . n du 1 n du
y- = sin O j- + - COS -j^ ,

dy dr r do J

If we proceed according to Art. 203, we must put the

equations between x, y, r, 6, in the form

here

therefore

r = >J(x* + tf),
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definite by means of the connexion in which it occurs. Thus,
for example, as we have stated in Art 170, the brackets

expressive of differentiation under certain conditions are

sometimes omitted, that is, they are left to be suggested by
the context.

In the present case the meaning of the symbols -=- , -^

,

-5-, j- which occur in Arts. 202 and 203 must be carefully

observed. We might use a more complex notation, as for

example the following ; let ^r (x, y) be any function of x and

y, and let ^ (r, 6) be the form which yjr (x, y) takes when for

x and y we substitute their values in terms of r and 8 ; then

d% (r, 0) _W (g, y)]
dx (djr(x,y) { dy

dr \ dx ) dr \ dy \ dr'

and this is the equation which in Art. 202 is expressed more
briefly thus,

du _du dx du dy

dr dx dr dy dr
'

The beginner however must remember that the second

form is an abbreviation of the first form, and he should recur

to the first form if he has any doubt of the meaning of the

, , du du du
symbols -j-

,
-=- , -=-

.

J dx dy dr

It is however with respect to the symbols -5- ,
-?"

,

-tq > jq which occur in Art. 202, and the symbols -5-
, -5-

,

-y-, j-, which occur in Art. 203, that mistakes are most
dy' dy'
frequently made. For example, beginners sometimes imagine

that the -7- of Art. 202 and the -r- of Art. 203 are connected
dr dx

by theformula -7- x -j- = 1. This formula however is quite
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inapplicable here ; for it implies that there is a single equa-

tion involving x and r and no other variable, which is not

the case here.

In Art. 202 we suppose that x and y are expressed as

dx
functions of r and : and -j- means the differential coefficient

ar

of x when r varies but does not vary : and as r varies y will

also vary, so that on the whole r, x, and y vary, and does
not vary. In Art. 203 we suppose that r and are expressed

dr
as functions of x and y ; and -j- means the differential co-

efficient of r when x varies but y does not vary : and as x
varies will also vary, so that on the whole x, r, and vary,

and y does not vary.

(IX U,T
Thus the ^- of Art. 202 and the -r- of Art. 203 are formed

dr ax
on different suppositions as to the quantities which vary and
the quantities which do not vary.

dx
In the example of the present Article we find that the -=-

ar

of Art. 202 = cos 8, and the -^ of Art. 203 = - = cos 8 ; and

the product of the two is not unity.

206. Suppose u a function of the three independent vari-

ables x, y, z, and that these are connected by three equations
with three new independent variables 0,

<f>,
r: it is required

to express -=- . -j- — in terms of differential coefficients
ax ay dz

of m taken with respect to the new variables.

We have, by Art. 174,

du _ du d0 du d<f> du dr

dx d0 dx dtf> dx dr dx

du du d0 du d<f> du dr ,

dy dff dy d(f> dy dr dy

du du d0 du d<j> du dr

dz d8 dz d<f> dz dr dz
,
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But by means of the three equations between x, y, z,

9,
<f>,

r, we can determine the values of

fflffld9dj>d$dj>drdrdr
dx' dy' dz' dx' dy ' dz' dx' dy'' dz'

and hence the above equations express -=- , -=-
, and -5- , in

- du du . du
termSOf ^' d$'™A

Tr-

Also by solving the above equations we can express
du du du . du du , du . . , ,

-jn> T7. j- , in terms of -=- , -r- , and -=-, which can also
do dcp dr dx ay
be found by the equations

dz

du _ du dx du dy du dz

Jo~dx d0
+

dy"cfc
+

dz d£

du du dx du dy du dz

d<p dx d<f> dy dcp dz d<f>

du

dr

du dx du dy du dz

dx dr dy dr dz dr

(2).

207. Suppose, to exemplify the above, we put

x = r sin 9 cos
<f>, y = r sin 9 sin (p, z = r cos 9.

Hence, to apply equations (2) of Art. 206, we have

dx a ,__ = r cos cos d>,
do
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If we employ equations (1) of Art. 206, we must put
the relations between x, y, and z, in the form

r = V(o' + 3/

s +A

<^) = tan-1 ^;

therefore -=- =
dx »J{x~ + y*+ z

3
) r

dr_y_

= - = sm COS
<f),

dy
sin 6 sin (p,

rfr z
-j- = - = cos ff,

dz r

dd _ z x _ cos 8 cos <)>

dx~ at + tf + z*' vV+ F) r
'

dd _ z y cos sin <£

dy
=

a? + j? + t' .Jlpt+tf)*" » '

dg_ Vfo' + y") _ sing

d^

d£
dx

ar+tf + t? r

y _ sin<£

X +y rs
d<]> _ x _ cos $
dy~ x2 +y*~ r sin '

dtf>

51

.0'

= 0;

therefore

du

dx

. n , du cos cos <A dw sin d> d(*m0cos^T-+ —X. --—v-sini
dr d0 r sin 0d</>

dw . . . , du cos sin d> du cos d> du
j- = sm 6 sm d> -j- + r -^ + —.

y
,

dy T dr r dd r sm dp

dw _ . d« sin 6 du

dz~ dr r dd

which will be found consistent with (1).

•(2),
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For exercise we give the results arising from differentiating

equations (2) of the preceding investigation.

cPu sin 26 ( . „ . d"u cos
2 8 d?u 1 dl

^ Ism &
dxdy~ 2 \ dr2 "•"

r
2

dff> r^sin' 8 dp
sin 20 d?u sin

2 du cos t . „ 1 \ du)

„ , f 1 d?u cot d?u 1 du
+ cos 2<f> <- ,., +

d?u sin20
"5

—

T~ = —r— cos
dx dz 2

^iretydr"*" r
2

(ty<29 r2
sin

2 #J '

^[dr2
r'dff

2 rdr)

cos 26 cos <£ ( d?u 1 d«
+

? \d8di-~rd~8

sin <£ fl (Pm cos 8 d*u
\

r \r dd d<j) sin 8 dr d(f>)

_ sin 20 cos
<f>

. cos 20 cos
<f> R sin </> n

Z T T

d?u _ sin 28 sin $ . cos 20 sin <£ R cos 6 „

dydz 2 r r '

cPu _ 2 .d?u sm*8 fld"u du\ sin28 fl du d?u \

dz*~
C°St,

d? +
r \rW +

dr)
+ ~r\^Jd~dr:de)'

<£u_
dx*~
.. f . iad*u cos'8 cPu sin 28 d?u cos'# du s\n2ddu

cos <f,jsin 6
d
-
x +-p- 5gi+___3&

+—_—___

sin2<£ f (fw cot# dV 1 du
r \d(f> dr r d0d<j> r sin

2 8 dcj>

sin
2 6 ( 1 c^m du cot dwj

^"""V
-
\rsm2 0df

+
dr

+~r~ ~d8)

2 , sin2d> - sin'rf)= cos
2

<f>L £ jjf _| r jv; say ;r r

d?u ... t- sin 2d) ,, cos
2

(f> >T

aif r r
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By addition we have

d1
u d?u d?u _ d?u 1 d?u 1 d*u 2 du cotfl du

d^ + df
+ lz'~d7 + P! d^ + r'siii

idd^ +
rdr

+
^rr d0'

208. The following example for two independent variables

is analogous to that in Art. 200 for one independent variable.

If x =i and y = e it is required to change the independent
variables from x and y to d and </> in the expression

n d"u ,i d"u n (w - 1) „_, .rf^t,a ^» + na: y^ r̂dy
+

J2
* & dx^dy*

+ -

Let this expression be denoted by r„, and let vn+1 denote

what it becomes when n is changed into n + 1 ; we shall

prove that

d*>«
. dv.

11 = - J "
.

"+1 dd^d<f>
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Hence we infer that x -~ + y~ is equal to nvn together

with two series ; and by uniting like terms in the two series

we obtain a single series of which the general term is

(w + l)n(»-l)...(n + l-r+l) .„_. , d"
+1 u

'~'~

\r
X y dx^dy"

Therefore x^ + y -^ = nvn+ Vn+1 ;

and thus (1) is proved ; we may write (1) for abbreviation thus,

v-« = {w +
zi>-

n
}

v* ®-

Put n = 1 in (2) ; then

\d d ) [d d If & du\
v
'
=W + d$- 1

\
v

>
=
\de

+
dt-

1

\\
x
Tx

+
yTy\

d ) [du , du) ( d d , ) f dd d } [du du) _ { d d ,lf^ d
dO
+

d<j> ]\d~6
+
d4) ~\d0 + d$~ )\dB

+
dj>

as we may write it ; again put n = 2 in (2) ; then

(d d ) (d d )<d d )[d d)

Proceeding in this way we obtain

d d ) \d_ d_ \(d d_ \(d_ d)

!e*d<i>
{n l)

)'"\dd
+
d$

2
]\d6

+
d<f>

l
\\de

+
d<j>r

V„=

EXAMPLES.

1. Change the independent variable from x toy in the equation

.d*u du
.

. ,

ar ij + * j~+ u = °» suPPosmg V = l°g x-

7-. i d*u
Result -7-7+ u = 0.

dtf
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_ m . d\ 2x dy y „ . .

2. Transform
-J + i

__
, ^ + _*_,-, = into an equa-

tion in which 6 is the independent variable, where
= tan

-1
x. „ , d*y

Result j£ + y = °-

— . d*y 1 dv
3. Transform -pr

t + - -^ + y = 0, mto an equation in which

t is the independent variable where a? = it.

Result t—^ + -¥ +w = 0.

* K 3= c^frv'
and x=logv(rby 8hew that

5. If a; = eos£, then

(1 — x!

) -j-f — x-f=Q becomes -rf= 0.
v 'da? dx df

1

,

dy

6. Transform
j (

i , by assuming x = r cos 6,

x -?- - y

Result ,, j.

^7HIy
If x = r cos 0, y = r sin 0, shew that

Vi
X + yix Idr
dy r dd'

x
di-y

8. If x = a (1 — cos <) and ^ = a (nt + sin <\ express

d*y . . . D . ncos<+l
ri in terms of t. Result =—=

—

dx* a sin
8
2



190 EXAMPLES OF THE CHANGE

9. Suppose u to be a function of r and

T* = x* + x
t
* + x*+ + x*;

then if

<Tu d"u d'u d*u _
dx * dx? dx? """ dx*

shew that

d'u n — ldu .

dr r dr

10. Given x = a cos $, y = 6 sin ^>, express

J

+ ©1
t

in terms of <j>.

_"^2
<&"

_
7

(a
s
sin

s
<A + &

2
cos

,
<£)*

Eesult - —

5

— .

ab

11. Transform -^ + 2^-^ £ + ^ + -^, = into an

equation in which £ shall be the independent variable,

having given x= log V(tan «).

Remit -£ + rty = 0.

12. Change the independent variable from y to x in

rf'w ^ d3u „ x „ dw .
-5-5 — 4 tan y -=-j + 2 tan y -=- = 0, supposmg tan y = x.

t> j. /. 9\!> dsu „ ,, ,. cPm _ du
Eesult (1 + xf j-j + 2x {1 + a?) -j-j+ 2 -}- = 0.

13. Transform t^+ (-5*) into an expression in which y is

the independent variable.

d"u
14. Given « = <+<*, transform -3-5 into an expression in

which a; is the independent variable.
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15. If z=u — esin u, and tan - = / 1-
J
tan - , shew

that-- (1 ~^f

dv (1 + e cos vY

'

16. If (a'-*')5-^ £- a =
'
and a? + y

l = a'> shew

that a? -y-i — z = 0.

17. Transform

(a + ^) 2

+ -4 (a +MJ +% = 2?»,

by assuming a+ bx = e'.

18. If z be a function of tbe two independ#it var'ables x
and y, and x and y be connected with two new vari-

ables r and by means of two equations, shew how to

d%
z d*z , d*z .

,
, ,,

express j-j, , , , and -r-i, in terms of the new

variables.

For instance, if x = r cos 6, y = r sin 0, shew that

j4 = .4 + £cos 20- Csin20,

-5^ = yl -B cos 20 + C sin 20,

-ZJL = £ sin 20 +C cos 20;
ax ay

. _ d!
2 . „ 1 d'z 1 «fe

where .4 +.#=-73 , A-B=-i -j?s + - -v- ,dr r d(r r dr

„_1 d'z 1 dz

rdrde r
2
rf0'

19. If x, y, z, and £, 77, f, be co-ordinates of the same point

P referred to two different rectangular systems, shew
that

dx
1+

dy'
+

dz'
~ d? +

drf
+
d?-
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20
-

If X U--y^£) +% = ^ and *=** ^ew that

d2
z dz

*»—©'-©* ©'-(ST-

22. Transform ^ - sec cosec 6
-J
+ #w2 tan2 6 = 0, into ah

equation in which a; shall be the independent variable,
having%iven x = log (sec &).

Result -
J4 + w!

y = o
dor ,y

23. If y = e~
B and x = sin 0, shew that

^ = co^{3sin ^ COS ^- sin^- 2 }-

o, -el rf
2« „ dV d'u . . du du

24. Express ^+2^^ +^ m terms of ^, -^ ,

where s = o
I +ev

, and « = e"
I + e"

1'.

„ 7 „ d2w „ c?
2m , rf

2M du duBesuhs W- 2st
d^t + e

-d7
+ s^ + t

d-t

25. If x = aee cos ^, and y = ae* sin
<f>,

shew that

s <?
2w rf

2M , tZ'u _ <Z
jm du

y dJ~ 2^dJdy +af
dtf~dJ*

+
d0-



( 193 )

CHAPTER XIII.

MAXIMA AND MINIMA OF A FUNCTION OF ONE VARIABLE.

209. Suppose
(f>

(x) to denote a certain 'function of x,

and that while the variable x changes gradually from one
definite value to another,

<f>
(x) changes in such a manner

that it is sometimes increasing and sometimes decreasing.

There must then be certain values of x, for which
<f>

(x) begins
to decrease, having previously been increasing, or begins to

increase, having previously been decreasing. In the former
case,

<f>
(x) has a greater value for the particular value of x

than it has for adjacent values of x, and is said to have
a maximum value. In the latter case, <j> (x) has a less value
for the particular value of x than it has for adjacent values
of x, and is said to have a minimum value. Hence, these
terms maximum and minimum are not used to denote the
arithmetically greatest and least values which a function can
assume ; for it appears from the above explanation that a
function may have several maxima and minima values, and
that some particular minimum may be greater than some
particular maximum.

210. Definition. If as x increases or decreases from
the value a through a finite interval, however small, <j> (x)

is always less than
<f>

(a), then
<f>

(a) is called a maximum
value of

<f>
(x) ; if $ (x) is always greater than <ji (a), then

<j> (a) is called a minimum value of <j> (x).

211. Rulefor discovering maxima and minima values.

Let
<f>

(x) denote any function of x. By Art. 92, we
have

<j> {x + h) =
<f>

(x) + h<f>' (x) + ^<j>"(x + 0h).

T. D. C. O
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If <j>'{x) be not zero we can give such a value to h that

the sign of

h4>'(<c) + -<l>"(ic+6h)

shall for that value of h, and all inferior values of h, be the

same as the sign of h<f>' (%), because - <j>"(x+6h) can always

be made less than
<f>

(x) by taking h small enough. In this

case

<f>
(x + h) —tf> (x)

and <£ (x — h) —
<f>

(x)

have different signs, and therefore
(f>

(x) has neither a maxi-
mum nor minimum value.

Hence, as the first condition for the existence of a maxi-
mum or minimum value of

<f>
(x), we must have

</>»=0 (1).

Let a be a value of x deduced from equation (1), so that

tj> (o) = 0.

We have now, by Art. 92,

<f,
(a + A) = $ (a) +1 </»"(«) +| <T (a + 0h).

Suppose <\>" (a) not zero ; then by giving to h some value

sufficiently small, the sign of

a2

will be the same as that o£ .— <j>" (a), or of <f>"{a), for that
[2

value of A and all inferior values

;

therefore <f>(a + h) —<j> (a)

and $ (a — h) —<p (a)

have the same signs.

If then
<f>"

(a) be positive <p{a) is a minimum value of

<t>(x) ; if £"(a) be negative <£ (a) is a maximum value of <£ (a;).
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If
<f>" (a) vanish as well as <f>'(a) then, by Art. 92,

4> (a+h)=<t>(a) +
^ f» + ^$'"{a+6h).

By reasoning similar to that used before, we may shew
that unless <f>" (a) also vanish $ (a) can be neither a maximum
nor minimum value of <£ (x) ; but that if

<f>" (a) vanish and
<£"" (a) be positive

<f>
(a) is a minimum value, and if $'" (a)

vanish and <£"" (a) be negative <f>
(a) is a maximum value.

Since this process may be continued until we arrive at

a differential coefficient which does not vanish when x = a,

we have the following result. In order that
<f>

(x) may have
a maximum or minimum value when x = a, it is necessary

that this value of x should make an odd number of the suc-

cessive differential coefficients of
<f>

(x) vanish, beginning with
the first ; when this condition is satisfied

(f>
(a) is a maximum

value if the next differential coefficient be negative and a
minimum value if it be positive.

212. It is to be observed that in the above demonstration

we have used 6 to denote a fraction less than unity, and it

is not to be assumed that the same fraction is denoted when-
ever the symbol is used. Also we have supposed as usual

that none of the functions <j> (a), <£" (a), . . . are infinite. We
shall shew hereafter, that maxima and minima values

may occur when
<f>

(x) = oo , as well as when $' (x) = : see

Art. 214.

213. Suppose that when x = a, the function
<f>

(x) has a
maximum or minimum value, and that </>"(a) is the first

differential coefficient that does not vanish, n being even.

By Art. 92, since <j>'{a), <f>"{a), ... all vanish up to
<f>

n~1
(a)

inclusive, we have

where and d
x
are proper fractions.

From these values of
<f>

(a + h) and tj> (a — h) we see that

<f>'(x) changes sign as x passes through the value a. If we
suppose x to increase and pass through the value a, then

02
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<£' (x) changes from positive to negative if <£"(a) be negative,

that is, if <j> (a) be a maximum ; and
<f>

(x) changes from nega-

tive to positive if
<f>"

(a) be positive, that is, if </> (a) be a

minimum. This suggests another form for the definition

of maxima and minima values and for the investigation

of the conditions of their existence which we give in the

next Article.

214. Definition. If as x varies through any finite in-

terval, however small,
<f>

(x) increase until x = a and then
decrease,

<f>
(a) is called a maximum value of <j> (x) ; if

<f>
(x)

decrease until x = a and then increase, <p (a) is called a mini-
mum value.

By Art. 89, if the differential coefficient of a function

be positive that function increases with the variable, and if

the differential coefficient be negative the function decreases

as the variable increases. Hence, as x increases <j>'(x) must
change from positive to negative when x = a, if

<f>
(a) be a

maximum, and from negative to positive if
<f>

(a) be a minimum.
But a function can only change its sign by passing through zero

or infinity. Hence, we must find the values of x that make

or
<f>

(x) = oo
;

and if as x passes through any one of these values </>'(as)

changes its sign, we have for that value of a; a maximum
or minimum value of

<f>
(x), according as, when x increases, the

change is from positive to negative or from negative to positive.

Example (1). Suppose
<f>

(x) = x* — 9a;
s + 24x - 7,

then <£' (as) = 3 (x
i - 6x + 8),

</>'>) = 6 (as -3).

If we put </>' (x) = 0, we obtain x = 2, or x = 4
;

when x=2,
<f>"

(as) is negative,

when x = 4, <f>"
(x) is positive.

Therefore when x = 2, <j> (x) has a maximum value, and

when x — 4,
<f>

(x) has a minimum value.

Example (2). Let <j> (as) = e
x+ e* + 2 cos x

;

therefore $ (x) =ex —e~x -2 sin x,

<f>"
(x) = e

x + e~*-2 cos x,
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<f>'"(x) = e*-e~x + 2sinx,

<£"" {as) = e* + e*+ 2 cos x.

If x = 0, we have f (x)=0, <j>"(x) = 0, </>'"(x)=0, and
<j>"" (x) = 4. Hence,

<f>
(x) is a minimum when x = 0.

It may be easily shewn that x = is the only value of a

for which <j>' (x) vanishes ; for

^-l-HH^ + *+...,

-. ,
X* x3

6 =l - X +
[2-\J

+ ->

2sinx=2Jx-g+g-..

therefore <j>' (x) = 4H +g +^ +

All the terms in <£' (a;) being of the same sign, </>' (x) can never

vanish except when x = 0.

Example (3). Suppose -5- = x (x — l)
a
(x — 3)

8
, for what

values of x will m be a maximum or minimum ? In this

Example the method of Art. 214 is preferable. When x is

negative -j- is positive ; when x is positive and less than

unity, -T- is negative. Hence -3- changes from positive to

negative as x passes through the value 0, and x = makes u
(lit

a maximum. When a; =1, -7- vanishes; it does not how-
ax

ever change its sign, but continues negative until x = 3, and
after that it is positive. Hence, when x = 1, u has neither a

maximum nor minimum value, but has a minimum value

when x = 3.

Suppose that in the Example last given we merely wish

to ascertain if x = gives a maximum or minimum value to u,

and that we are required to proceed according to the method
of Art. 211 : we have
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g = *(*-l)>-8)«,

^j= (as - Vf (x - 3)
3 + 2x (x - 1) (x - 3)'+ 3x (x - 1)* (x- 3)

s
;

d*u
when a; =0 the first term in -y-j is negative, and the other two

teitns vanish since they both have x as a factor. Hence we
need not have expressed them, but might have put

d*u
-r-j = (x— l)

s
(x — 3)

3 + terms vanishing when x = 0.

This remark should be carefully noticed, because in Exam-
ples like the above we are saved the trouble of writing down
superfluous terms.

Example (4). The following Example will introduce the

reader to considerations by which the process for finding

maxima and minima values may sometimes be abbreviated.

Through a given point P a
straight line is drawn, meeting
the axes Ox and Oy at A and B
respectively : find the least length

this straight line can have.

Let OM=a, MP=b, PA 0=6.

b
Then PA =

PB =

sin 6

'

a

cos 0-

Put u = -.—s H -
n , and we have to find the least value of u.

sin a cos ff

Now
du b cos 6 a sin 8

_

d0
=

srn
1^ +

"coF7T'

therefore -jy. vanishes only when tan 6= . / -

.

From the figure it appears that by making 6 either as

email as we please, or as nearly equal to a right angle as



OF A FUNCTION OF ONE VARIABLE. 199

we please, the straight line AB may be made as great as we

please. Also, as 8 varies from to -
, there must be some

value of 8 which gives to the straight line AB the least length

it can have, and this least length of AB will satisfy the defi-

nition of a minimum length. And as -^ for a value of 6 be-

tween and - can never change its sign except when
J*

3/b
tan 8 = / -

; this must be the value of Q that gives the least

length we are seeking.

This value of 8 gives for the least length the value

(a» + &*)*.

du
In this Example it is easy to see from the value of -tq,

that it does change sign from negative to positive when 8
increases and passes through the value assigned ; but in more
complicated questions it is often advisable to shew in the

manner above exemplified, that a maximum or minimum
must necessarily exist, and then we are saved the trouble of

examining if the differential coefficient of the function changes
sign when it vanishes.

215. If u be a function of x we have shewn that -7- =
ax

is the equation from which we are to find values of x which
make u a maximum or a minimum. If then between two

assigned values of x there exists no value which makes -=-

ax
vanish, we conclude that there is no maximum or minimum
value of u between those assigned values of x ; so that u
either continually increases or continually decreases as x
changes from the less to the greater of the assigned values.

This principle has already been noticed in Art. 89, but its

importance and its natural connexion with the subject of the
present Chapter lead us to draw attention to it again.

For example, suppose

u — 2x — tan
-1
* — log {x + V(l + as

8
)}

;
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*u du « *
then t- = 2 —

dx 1 +x* a/(1 + x*)~

Hence -=-- is positive and cannot vanish for any value of x

-lying between any assigned positive value and positive in-

finity. We conclude that u continually increases as x changes
from zero to positive infinity.

216. Maxima and minima values of an implicit function.

Let
<f>

{x, y) = be an equation connecting x and y ; it is

required to find the maxima or minima values of y. From
the given equation we know that y must be some function

of x, and if the equation admits of solution we can express

y explicitly in terms of x, and then find the maxima or minima
values of y by the foregoing Articles.

But instead of solving the given equation we may proceed

thus : by Art. 177,

fdu\

dy _ \dx)
_

dx (du\ '

\dy)

where u stands for
<f>

(x, y). But the values of x which make
y a maximum or minimum must, by Art. 211, be found by

solving the equation ~- — 0. Hence

(!)=»•

and this equation, combined with u = 0, will determine the

values of x, which may make y a maximum or minimum.
To determine whether such a value of x does make y a

maximum or minimum, we must, by Art. 211, examine the

value of -r^{. By Art. 180, since [j-j =0, we have

(<£u\

\da?)d?y_

dx' !du

\dy
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Hence we have this rule : To find the maxima or minima
values of y, which is an implicit function of x determined by
u = 0, we must find values of a; and y which satisfy u =

and
(
j- ) = 0. If when these values are substituted in

(du\

the fraction is positive, we have obtained a maximum value

of y ; if the fraction be negative, we have a minimum value

ofy.

Example. If a? - Baxy + y* = (1),

find the maxima or minima values of y.

Here t =T
dx y2 — ax'

therefore ay — x* = (2).

Combining (1) with (2), we have

a-
6-2aV = 0;

therefore x = 0,

or x = a 1/2.

The corresponding values of y are

y = o,

y = aZ/i.

(d*u\

[dx2

J
If we substitute the values x = a 1/2, y = a 4/4, in —

w
Gx 2

that is, in —^-7-5 r. we obtain — . Hence there is a
3 (y — ax) a

maximum value of y. The values x = 0, y = 0, which make

the numerator of -Jr- vanish, also make its denominator vanish

:

dv dx
.

thus ,- assumes an indeterminate form, and we must discover
dx
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its real value. Forming the derived equations from the

given equation, we have

v—>3+*©'-*2+—

*

When we put x = 0, y = 0, in these, the first equation gives

-j- — 0, and the second equation gives -t4 = r- . Hence,

when x= 0, and y = 0, we have 3/ a minimum.

217. If the values of x and y found from w = and
d'y .

make -^4 vanish, then in order that they may

make y a maximum or minimum, it will be necessary that

d"y
-t4 should also vanish. This can be tested by making use

of the value of -=-^ given by Art. 184 ; and by obtaining

dl
y . d?y

a formula for -~ similar to that for -~
3
just referred to, we

d l
y ... .

can ascertain whether -— ls positive or negative for the

specific values of x and y. On account however of the

complexity of the general formulae for -jM, and -~{
, it is

ax ax
preferable to determine them in any example directly by the
method of Art. 184, rather than to quote the results of that

Article.

218. Suppose u = <j>(x, y) and ijr (x, y) = 0; so that y is

a function of x by the second equation, and therefore from
the first equation u is a function of x ; required the maxima
and minima values of u. We may proceed theoretically thus :

by solving the equation -\jr (x, y) = 0, obtain y as a function

of x ; substitute this value of y in
<f>

(x, y) ; then u becomes a

function of x only, and its maxima and minima values can

be found by previous rules. But we may avoid the difficulty

of solving the equation ijr {x, y) = 0, thus.
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By Art. 172, we have

du _ ldu\ /dw\ dy

dx \dx) \dy) dx

'

Also, putting v for i]r (x, y), we have, by Art. 177,

fdv

\dx)dy = _

W
therefore

dx /dv\ '

\dy)

/du\ /dv\

du _ fdu\ \dy) \dx)

dx \dx) fdv^

(I)
Hence, the values of x and y that render u a maximum

or minimum must be sought among those that satisfy simul-

taneously

[dx) [dyj ~ \dy) \di) ~ °'

and i/r (x, y) or v = 0.

d*u
The value of -5-5 must then be found by Art. 176, and

we must examine whether the specific values of x and y
render this positive or negative, in order to determine whether
u is a minimum or a maximum.

Example. u = a:" + y*,

while (x-a,y+{y-b)'-c' = 0, or v = 0.

*- ©-•* ©-*
©-(-* ©-'<»-»>•

Hence a: (y — 5) — y (a: — a) = ;

therefore ay = 6x.



204 MAXIMA AND MINIMA VALUES

Substitute the value of y in v= 0, and we have

x< (l+
j?)

- 1x (a + £) + a* + V= <?

;

therefore x = a+ -77-=

—

^-

.

- V(« + &
2

)

Upon examination it will be found, that if we take the

upper sign in the value of x we obtain a maximum value

for u, and if we take the lower sign, a minimum. This
example is a solution of the geometrical question, " To find

the points in the circumference of a given circle which are at

a maximum or minimum distance from a given point."

1

219. The process for finding the maxima and minima
values of an implicit function may be extended to the case

in which one variable is connected with more than one other

variable, the whole number of equations being one less than
the whole number of variables. Suppose, for example, we
have three equations,

F{x,y, z, u) = 0,

F^x, y, z, u) = 0,

K(x> y. z
>
u
) = °

;

u being the variable of which we wish to find the maximum
or minimum value.

From the given equations it follows that we may consider

y, z, and u functions of the independent variable x. Hence

dF dF dy dF dz_ dFdu =
dx dy dx dz dx du dx

.(1).
dF\ d^dy dF\dz_ dF,du =
dx dy dx dz dx du dx

dF,
+
dF

t
dy

+
dF

2
d^^dj^du =Q

dx dy dx dz dx du dx

dy dz
from these equations we can eliminate

-f-
and ->- , and

7 O.

X

CISC

the value of -3- which we then obtain must be put equal
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to zero. Or, more simply, we may put -=- = in these equa-

dv dz
tions, and then eliminate -# and -5- from the resulting equa-

tions which are

dF dFdy dF_dx =Q
"

dx dy dx dz dx

dF, dF, dy dF, dz n

dx dy dx dz dx

dK +
dF

1
dy

+ dJ\d1=0
dx dy dx dz dx

(2).

The equation obtained by eliminating -^ and -*-
, com-

bined with the equations F= 0, F
1
= 0, Ft

= 0, will determine

x, y, z and u.

d'u
By differentiating equations (1) again, we can obtain -j-2 ,

and by the sign which the values of x, y, z, u, already found,

give to this quantity, we determine whether u is a maximum
or minimum.

220. Suppose we have a function of n variables, the

variables being connected by n — 1 equations, and we require

the maximum or minimum value of the function. For ex-

ample, suppose three equations

F(x,y,z,u) = 0, F
l
{x,y,z,u)=0, F

t
(co,y, z,u) =0,

and that we wish to find the maximum or minimum of

f(x, y, z, u). In this case, to the equations (1) of the pre-

ceding Article, in which -5- must not be supposed zero, we

must add

df df dy df dz df du _
dx dy dx dz dx du dx

From these four equations we must eliminate -£- , -r-

,

j dx dx
and -=- . The resulting equation combined with the given
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equations F=0, F
l
= 0, F2

= 0, will determine x, y, z, and u.

We should then form the second differential coefficient of

f{x, y, z, u) -with respect to x. This will involve j4> t4>
rt^ni doc aoc

and j-j , which must be found by differentiating equa-

tions (1) : by the sign of this second differential coefficient

of f(x, y, z, u) we shall settle whether the function is a
maximum or a minimum.

221. In Art. 214 we obtained as the condition for <f>(x)

having a maximum or minimum value, that <f>'(x) must
change sign, and hence that

<f>
(x) must be zero or infinite.

The cases in which
<f>

(x) is infinite occur but rarely, and in

the Articles following Art. 214 we have always considered
<f>'

(x)

to vanish when
<f>

(x) is a maximum or minimum. We shall

here add one proposition which shews that according to the first

view given of maxima and minima values (Arts. 209... 213),

a maximum or minimum may exist when the differential

coefficient of the function considered becomes infinite.

Suppose that <f>(x) is such a function of x that when x = a
we have some of the differential coefficients of

<f>
(x) infinite,

so that
(f>

(a + h) cannot be expanded in powers of h by
Taylor's Theorem.

Suppose that by some unexceptionable algebraical process

we find

<f>(a + h) - 4>(a) = Ah" + Bh? + Chy + ...,

where a, /S, 7, ..., are not necessarily positive integers. If

aDy one of these exponents be a fraction in its lowest terms

with an even denominator, then <j>{a — h) —
<f>

(a) will be
impossible, and the consideration of maxima and minima
values becomes inapplicable. If none of the exponents be
of this form, then <f>(a — h) —

<l>
(a) will be a possible quantity.

Now there may be cases in which, by taking h small enough,

the sign of Aha
determines the sign of <f>(a +h) —(p (a) ; for

example, this happens if the number ofterms in $ (a+ k)— <j> (a)

is finite, and the exponents a, /8, 7, ..., all positive, and a

the least. Let us suppose such a case, and let a be a proper

fraction with an even numerator ; then
<f>

(a + h) — <$> (a) and

<f>(a — h)—<f> (a) are both positive if A be positive, and nega-

tive if A be negative, when h is taken small enough. Hence
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<f> (a) in the former case is a minimum value of
<f>

(x) and

in the latter a maximum value.

Also, since a is a proper fraction,

- ,, is infinite when h = 0,
an

therefore $ (x) is infinite when x — a.

Hence
<f>

(x) may be a maximum or a minimum when $' (x)

is infinite.

Example. Suppose

<f>
(x) = c + (x - a

)

!+ (x - a)
i

;

therefore <}> (a + h) = c + hr + h ,

<f>
(a) = c,

</>(a±A)-(£(a)=A! + h*.

Hence <j)(a + h) and
<f>
(a— h) are both necessarily greater

than
<f>

(a). Hence
(f>

(a) is a minimum value of
<f>

{x), and
it is obvious that

<f>
{x) is infinite when x = a.

222. On certain cases of Geometrical Maxima and Minima.

"We occasionally meet in Geometry cases of maxima or

minima values for which the ordinarj' analytical process

appears to fail, though from geometrical considerations it is

obvious that maxima or minima do exist. The following

problem will introduce the difficulty which it is proposed to

explain. " Find the maximum and minimum perpendicular

from the focus on the tangent to an ellipse, the perpendicular

being expressed in terms of the radius vector."

The equation which gives the perpendicular in terms of

the radius vector is

»
Vr

P=2a^r>

therefore p-~- =-tt r» , which must = 0.r dr (2a — r)

Now this can only be satisfied by r = + oo , which values

are not admissible, whereas we know from Geometry that p
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has a maximum value = a (1 + e), and a minimum value
= a{l-e).

The reason we do not find these values by the above usual

analytical process is this. In the ordinary theory of maxima
and minima the function is considered to be expressed in

terms of an independent variable which may assume all possi-

ble values. But in the example above r is not an independent

variable ; its values are limited to those found by ascribing

all possible values to 6 in the equation

a(l-e!
)

T —~ —

^

•

1 + e cos 6

Since r is thus a function of 6, we may consider p
which is a function of r to be also a function of 6. Hence

-^ =^— and this may be made =0 if we can make
dd dr dd J

dv
-j-a = 0. This we can do, and thus p has a maximum or
do
minimum value at the same time as r has.

Similar remarks apply to other examples. Thus generally,

if y = $ (x), where x is not susceptible of all possible values,

it may be impossible to make -j- = 0, and thus there may be,

apparently, no maximum or minimum value of y. But in this

case, if x can be expressed in terms of some variable 8 which
dx

can assume all possible values, we must put -^ = 0, which

makes -M. = 0, and thus we determine simultaneous maxima
at)

or minima values of x and y.

Example. To find the maximum and minimum length

of the straight line drawn to a circle from a given external

point.

Take the axis of x passing through the centre of the circle

and the given external point, the former being the origin. Let

a = the radius of the circle, c = the distance of the given

point (A say) from the centre ; and let x be the abscissa of a

point P on the circumference ; then AP* = c* + a2 — "2cx.
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The differential coefficient of this expression •with respect

to x is — 2c, which cannot vanish. But if we put x=a cos 0,

we have
AP2 = c? + a2 - 2ac cos 0,

—jn— = 2oc sin
;

at)

and = 0, 0=ir, give the minimum and maximum values

respectively of AP2
.

In this Example the difficulty would not appear if we had
so chosen our axes that x should not be a maximum simul-

taneously with AP. Calling b the ordinate of A, c the abscissa

of A, and a the radius of the circle, we shall have

AP1 = a2 + b
2 + c

a - 2b V(a
a - x2

)
- 2cx,

which has its minimum and maximum values, when

^V^ + cV
Another solution of the problem is given in Art. 218.

The following is an analogous case. Find those conjugate

diameters in an ellipse of which the sum is a maximum or

minimum. Let r and r be any two conjugate diameters,

and u = r + r, then u is to be a maximum or minimum,
while r

2 + r" = a? + b
2 = c

2
, say

;

thus u = r + V(c
s— r

2
),

du _ r

dr 'Jic'-r
1

)

du c
2

, c
2

If -J- be put = 0, we get r
2 = -

, and therefore r'
2 — - .

This gives us the equal conjugate diameters, the sum of which
we know to be a maximum. If we express r, and therefore r,

in terms of some variable which can take all possible values,

as for example
<f>

the inclination of r to the axis major, we

shall sret an additional result. For t-. = -7- -j-r, and there-
d<p dr d(p

fore, if -T7 = 0, we have also -5-7 = 0. But -j-r = makes r a
d<f> d<p d<p

maximum or minimum, and thus we obtain the two principal

T. D. o P
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axes, whose sum is a minimum. By a different method, we
might have obtained at first the minimum value of r + r.

For since r
2 + r"' = a2 + tf, and rr' sin 9 = ab,

we have (r + r'Y = a2 + 6
2 + ^—3

,

v ' sin if

where 6 is the angle between r and r. Differentiate with

respect to 8, and we get •-»-„- = 0, therefore = -
; this° sin 6 2

gives the minimum value as before ; -j-r = would give us a

second result, which would be the maximum.

The foregoing Article has been derived from the third

volume of the Cambridge Mathematical Journal, page 237.

The following problem will furnish an exercise. Find the

maximum or minimum length of the straight line drawn from
the end of the minor axis of an ellipse to meet the curve.

If x, y, be co-ordinates of the point where a straight line

drawn from the end of the minor axis meets the curve, the

length of the straight line can be expressed either as a func-

tion of x or of y ; thus two solutions can be obtained and
compared.

In the solution of some of the examples on maxima and
minima the following results will be required : they may be

established by means of.the Integral Calculus.

The -volume of a right cylinder is found by multiplying

the area of its base by its altitude.

The convex surface of a right cylinder is found by multi-

plying the perimeter of its base by its altitude.

The volume of a right cone is one-third of the product of

its base and altitude.

The convex surface of a right cone on a circular base is

one-half the product of its slant side and the perimeter of

its base.

4*7n*
8

If r be the radius of a sphere its volume is —5— and its

surface is inrr
2
.
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EXAMPLES OF MAXIMA AND MINIMA.

1. Shew that x5 — 5x* + 5x8 — 1 is a maximum when x— 1

;

a minimum when x = 3 ; neither when x = 0.

2. Shew that x' — 3a? + 3x + 7 is neither a maximum noi

a minimum when x=\.

3. If m = xs — 3x" + 6a; + 7, shew that it has neither a
maximum nor a minimum value.

4. If u = a? — 9xa + 15x — 3, find its maximum and mini-

mum value.

A maximum when x = 1 ; a minimum when a; = 5.

5. u = (x - 1)* (x + 2)
3
.

A maximum when x = — f ; a minimum when x = 1

;

neither when x = — 2.

6. u=(l + x3)(7-x)a
.

A maximum when x = 1 ; a minimum when x = 0,

and when x = l.

7. w = 3x5- 1 25x3 + 2160x.

A maximum when x = — 4, and when x = 3
;

a minimum when x = — 3, and when x = 4.

1 — x + x2

8 M = T~, 2 A minimum when x = 1.
1 +x— ar J

. x2 - 7x + 6
9. M = ——

.

x — 10

A maximum when x = 4 ; a minimum when x = 1 6.

10. If ~ = x" (x - l)
2
(x - 2)

s
(x - 3)

4
, find when u is a

maximum or minimum.

A maximum when x = ; a minimum when x = 2.

(J,

U

11. If -j- = (x— 1) (x — 2)
2
(x — 3)°, find when u is a maxi-

mum or minimum.

A maximum when x = 1 ; a minimum when x = 3.

P2
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12. u = x [a + x)* (a — xf.

A maximum when x = - , and when x = — a,
o

and a minimum when a; = — -

.

13. .-^'
a — 2a;

A minimum when x = .-

.

4

14. m= 6 + c(a: — a)*.

A minimum when x = a.

a' b°
lo. m=—h

x a — x

A minimum when x = = , and a maximum when
a + b

a*
<r= , .

a —b

.. 3a;'- a'
16

-

M =
(^T^T

A minimum when x=0, and a maximum when x=±a.

17. « = (mx + na)
m+n - (m + n)

m^xma".

A minimum when x = a.

18. Shew that is a maximum when x = cos x.
1 + x tan x
i

19. Shew that x* is a maximum when a; = e.

20. Shew that , — is a maximum when x = - .

tan 3a; 8

7T
21. Shew that sin x (1 + cos a;) is a maximum when x= ^ .

o

22. If arc/ (y — x) = 2a*, shew that y has a minimum value

when a; = a.
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23. If Sa'y
1+ asy' + iau?= 0, shew that when x= — , y has

a maximum value, namely — 3a, the value of -r-4f- being

then — —

.

ba

24. If x* + 1aa?y — ay* = Q, shew that when x = ±a, y = — a
_8o

9
'

4a V6

and is a minimum. Also, when y = — — , a; is both

a maximum and minimum, and is = +

25. If 2a?+ 3a#* — x*y
3 = 0, shew that x = a . 5* makes y a

minimum, and = a . 5 -

26. Find the maximum and minimum value of y, when

y* — 4c*ya:+ a;* = 0.

a; = c \/3 makes y = c ^(27) a maximum,

a;= — c <\/3 makes y = —c \^(27) a minimum.

27. A person being in a boat 3 miles from the nearest point
of the beach, wishes to reach in the shortest time a
place 5 miles from that point along the shore : sup-
posing he can walk 5 miles an hour, but row only at
the rate of 4 miles an hour, required the place where
he must land.

One mile from the place to be reached.

28. The sides of a rectangle are a and b : shew that the
greatest rectangle that can be drawn so as to have its

sides passing through the corners of the given rect-

angle is a square, each side of which is —
;
—

.

29. If a rectangular piece of pasteboard, the sides of which
are a and b, have a square cut out at each corner, find

the side of the square that the remainder may form a
box of maximum content.

_,, ., a + b-t/ia* — ab + V)
The side = -z .

o
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30. ANorman window consists of a rectangle surmounted by
a semicircle. Given the perimeter, required the height

and breadth of the window when the quantity of light

admitted is a maximum.
The radius of the semicircle must equal the height

of the rectangle.

31. Shew that the altitude of the greatest equilateral triangle

that can be circumscribed about a given triangle, is

{^ + F-2abcoa(iTT+C)}K

32. A straight line is drawn through the given point P,
meeting the axes Ox and Oy at A and B respectively

(see the figure on page 198) ; find the position of the

straight line,

(1) When AB is a minimum.

(2) When OA + OB is a minimum.

(3) When OA x OB is a minimum.

(4) When OA + OB + AB is a minimum.

(5) When OA x OB x AB is a minimum.

(6) When OA" + OB" is a minimum.

Let 6 denote the angle PAO, then we must have

(!) tantf=Q*.

(2) tan0=Q\

(3) tan 6 = -
,

(4) tan 8 = ,' ,, ,v
' a + V(2a&)

(5) 2atan80-&tans + atan0-2&=O,
i

(6) tan*=g) .

33. Having given an angle of a triangle and the opposite

side, prove that the area will be a maximum when the
given angle is equidistant from the other angles.



EXAMPLES OF maxima AND MINIMA. 210

34. Having given an angle of a quadrilateral and the two

opposite sides, prove that the area will be a maxi-

mum when the given angle is equidistant from the

other angles.

It follows from the preceding Example that the two

sides which contain the given angle must be equal in

order to ensure a maximum area ; for if they were not

equal the area of the quadrilateral would be increased

by changing these two sides into two equal sides.

35. Find the least ellipse which can be described about a

given parallelogram, and shew that its area is to that

of the parallelogram as it is to 2.

3b*. The least tangent to an ellipse intercepted by the axes

is divided at the point of contact into two parts, which

are equal to the semiaxes respectively.

37. Find the area and position of the greatest triangle that

can be placed in a given parabolic segment, having the

chord of the segment for its base.

38. Find the least triangle which can be described about a

given ellipse, having a side parallel to the major axis

and having the other sides equal.

The height is three times the semi-minor axis.

39. Prove that of all circular sectors described with the

same perimeter, the sector of greatest area is that in

which the circular arc is double the radius.

10. A chord PSp is drawn through the focus S of an ellipse,

and the points P, p, are joined with the other focusH

:

determine when the area PHp is a maximum.

Let e be the eccentricity of the ellipse and the
angle between the chord PSp and the major axis of

the ellipse. If 2e' is greater than 1 the maximum is

1 7T .

determined by cos
4 6 = 2—5 , and 6= - gives a mini-

mum; if 2e
2

is not greater than 1 the maximum is

when 6= — , and there is no minimum.
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41. Find the length of the shortest normal chord in a para-

bola, and prove that it intersects the curve nearer the

vertex than any other normal chord.

If 4a be the latus rectum of the parabola the re-

quired length is 6a V3.

42. Two ships are sailing uniformly with velocities u, v along

straight lines inclined at an angle 6: shew that if a, b

be their distances at one time from the point of inter-

section of the courses, the least distance of the ships

(av — bu) sin 8
is equal to

{u'+ v'-2uvcos6) i

43. Of all the straight lines drawn from the vertex of a given

ellipse to the circumference of the circumscribing circle,

determine that for which the portion intercepted be-

tween the two curves is a maximum.
If 6 be the inclination of the straight line to the

major axis of the ellipse, and e the eccentricity of the

ellipse,

2e
2
cos

2 = 3 - e
2 - V{(1 -

e

2

) (9 - e
2

)].

44. If an ellipse be described to touch a given semicircle and

its diameter symmetrically, its area when a maximum

will be—t- , r being the radius ,of the circle.
3 V3

45. An ellipse is inscribed in an isosceles triangle, and has

one of its axes coincident in direction with the straight

line bisecting the vertical angle of the triangle : shew
that this axis is two-thirds of the height of the tri-

angle when the area of the ellipse is a maximum.

46. Find what sector must be taken out of a given circle, in

order that the remainder may form the curved surface

of a cone of maximum volume.

The angle of the sector must be -—

—

-
.

V3

47. Two focal chords are drawn in an ellipse at right angles,

find when their sum is a maximum, and when a

minimum.
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[In the following problems the cones and cylinders are sup-

posed to be right cones and cylinders on circular bases.]

48. Determine the greatest cylinder that can be inscribed in

a given cone.

If b be the height of the cone, and a the radius of

4
its base, the volume of the cylinder is — ira?b.

49. Determine the cylinder of greatest convex surface that

can be inscribed in the same cone.

irba
The surface o

50. Determine the cylinder, so that its whole surface shall be

a maximum.

The radius of the cylinder = —pr r ; but by theJ
2 (b — a)

'

J

nature of the problem this must be less than a ; this

leads to the condition that b must be greater than 2a in

order to ensure a maximum. If b be not greater than
2a the whole surface of the cylinder continuallyincreases

as its radius increases, and there is no maximum.

51. Determine the greatest cylinder that can be inscribed in

a given sphere.

If r be the radius of the sphere the height of the
2r

cylinder is -j-

.

\ o

52. Determine the cylinder inscribed in a given sphere which
has the greatest convex surface.

Height = r \/2.

53. Determine the cylinder so that its whole surface shall be

a maximum.
14

Height = ,{2
(l--i)

54. Determine the greatest cone that can be inscribed in a
given sphere. Height = f r.
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55. Determine the cone of the greatest convex surface that

can be inscribed in a given sphere.

Height =%r.

56. Determine the cone so that its whole surface shall be

a maximum.

Height =
f6 (

23 -Vl7).

57. Given the volume of a cylinder, find its height and
radius when the sum of the areas of its convex surface

and one end is a minimum.

The height is equal to the radius.

58. Of all cones described about a given sphere, find that of

minimum volume.

The sine of the semivertical angle must be \.

59. A series of cones have their slant sides of the same
length : find that which has the greatest volume.

The tangent of the semivertical aDgle = V2.

60. Find the position of the chord which passes through a

given point within a parabola, and cuts off from the

parabola the least possible area.

61. Find a point in an ellipse from which, if perpendiculars

be drawn to two given conjugate diameters, the sum
of their squares will be a maximum.

62. Prove that
<f>
{/(x)} is necessarily either a maximum or

minimum when f(x) is a maximum. And so also

when f (x) is a minimum.
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CHAPTER XIV.

EXPANSION OF A FUNCTION OF TWO INDEPENDENT
VARIABLES.

223. Let u =
<f>

(x, y) be a function of two independent
variables, and suppose

<f>
(x + h, y + k) is to be expanded in

ascending powers of h and k. Put

h = ah', k = ak',

then <f>(x+ h, y + k) = <f>(x+ ah', y + ak');

the last expression may be considered a function of a, and
denoted by /(a). By Maclaurin's theorem,

/W=/(0)+/'(0).«+/"(0).^ +
;

we shall now shew how the differential coefficients of f(a)
may be conveniently expressed. Suppose

x + ah! = x, y + ak' = y;

then /(a) stands for <j> (x\ y) and since both x and y' con-
tain a, we have by Art. 169,

.,. = #Ja^jO dx'
+ d<ft (x, y )

%'
^

dx' da rfy' da

= A
,j^jQ ]h

, d<f>(x',y')

dx dy'

Also, by Art. 63,

#K y) ^ <ty (s'. y') <£*<'.

dx da;' ' dx

'

die'
but

dx
= 1;
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d<l> (x, y) _ d<f> (x, y)
therefore

dx dx

Similarly
dA^il = dA^i),

hence /'(a) = h'*£^+ 4.^*jQ.

which, for shortness, may be written

Similarly,

J {a) h
dx*

+2htC
dxdy

+ k df

J W ~ h
dxs + dhk

<lx'dy
+3flk

dxdy>
+ k df

The law of the formation of the successive differential

coefficients of /(a) is thus obvious. When a=0, /(a) be-

comes u ; hence we have

Restore h for <zk', and k for a&'; then

, , , .. 7 du , du
4>(x + h,y + k)=u + hj-

x
+kj

y

[2 | dx2 dxdy drf



OF TWO INDEPENDENT VARIABLES. 221

224. If we wish the series for </> (x + h, y + k) to close

after a finite number of terms, we can put the expansion

for /(a) under the form

/(») =/(<>) +/'(0) . a +/"(0) .*+...+f~(Q).j£L

+/(*).£;

and from this the required form for <£ (on + h, y + k) can be

obtained. For example, if n = 3,

4,{x + Ji,y + k)=u + k£ +k^

where t> stands for <f>(x + 8h, y + 0k).

225. In the formula established in Art. 223, put x= 0,

and y = ; then

./77v 7 du. , <?u„

(U)-H +A^ +i^

[_2_| Jar
1

ofody rfy"

-I-

where m , -3-% -3-°, jt, stand for the values of

du du d'u ,

w, j- , j- i t-j , when in these expressions we put

x = 0, and y = 0. If we change ^ and & into a; and y respec-
tively in the above formula, we have

, . . du„ du*

*E{*£+-£b+>rifi
+ .
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x and y being each put equal to zero in u
a
and its differential

coefficients after the differentiations have been performed.

In this manner the formula of Maclaurin is extended to

the expansion of functions of two variables.

226. The expression for the nth differential coefficient

of /(a), in Art. 223, is

h
dx"

+ n/l k
dx"ldy

+
[2

A k dx^df- +k df
•which, for abbreviation, may be written

\ dx dy) J

provided we interpret this expression thus:
(
h! -=- +k' -=-

]

d ^
is to be expanded by the Binomial Theorem as if h! -=- were

one term and lc -5- the other term : when the expansion is

/ , dVT
f d\ T

effected, every such term as I ti -5- I f h' 3-
J f which occurs

is to be replaced by h""lc
r

, —-, -
. If we adopt this mode

of abbreviation the result of Art. 223 may be written

*(*+ h-y+v= u+
{
h
di
+k d^ u+\\{

h
Tx
+k

d\)
u

1 / d
, 7
dy1

,
1 (,d

,
. d\"

+ + \^Tl{h dx +
k
d;V)

U +
[n{

h
dx

+ k
d-y)

V>

where u= ip(x, y), and v = <£ (x+ 6h, y + 6k).

By Art. 110 the last term of the expansion may, if we
please, be replaced lay

1^1 <•-*"(»»+*=)*dy)

The methods here given for the expansion of a function

of two independent variables may be readily extended to

the expansion of a function of more than two independent

variables.
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MISCELLANEOUS EXAMPLES.

1. Shew that if x and c are positive

m x c

' C + X X C + X

decreases as x increases.

2. Shew that if x and c are positive

\c + x)

increases as x increases.

3. If u= (x— 3)e
a+ 4:xe

x+x+S shew that -5—5, -r.andu

are positive for all positive values of x. See Ex. 10, p. 86.

4. Shew that for positive values of x the expression

e-
I (x-2) + e

z (x + 2)

diminishes as x increases, and that its greatest value

1
1S 6-

5. Demonstrate the following approximate expression when
x is small,

i f x liar* 7a;
3
)

(l + *)*=e|l-- +— -_|
1

(1 + x)x — e
6. Evaluate ^ '- when x = 0.

x

7. Shew that when x is infinite

,(i + I)"-rfiog(i + l)-a

8. Find the value when x is infinite of

^(l + iy-S^log^ + i).

Result, e.

Result. — -
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77"

— — tan
-1 x

9. Evaluate --—;-- when x = 1.

log (cot
|J

10. Evaluate . when x = 0.
cot x + log x

t* i
sec" a; . 7r

1 1. Evaluate ..„, when a; = — .

n _ _ , tan nx — tan mx
12. Evaluate —=—;-» s-r- .

sin (»i — ma;)

(1) when a; = 0, (2) when» = m.

13. In the equation f(x + h)—f(x) = hf'(x+6h), shew
that if/"(x) is not zero the limiting value of 6 as h is

indefinitely diminished is - : also shew that if f'{x)

is the first of the differential coefficients f'{x) , f" (x),...

which is not zero, the limiting value of 6 as h is in-

definitely diminished is

IT.

14. In the equation f(x + h)—f(x)=kf'(x + 9h) shew
that if 8 be the same for all values of h, it must equal

- and/"(x) must be constant.
it

15. Change the independent variable from z to x in the

equation

where z =e™ x
.

Result, -pi + tan a; -/ = 1
aV ax
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16. Transform the expression

fduV /du\ 2 /duV) f du du du)"
2

\T*) + {dy)
+

{irz))\
X

-dx
+
yTy +

Z
dz\

into one in which r, 8,
<f>

shall be the independent
variables, having given

x = r sin 6 cos
<f>, y = r sin 6 sin

<f>,
z = r cos 0.

17. If x, y and f, t) be co-ordinates of the same point

referred to two systems of rectangular co-ordinates,

shew that

dx* dy1 \dxdy)~ d? drf [d£ dv)
'

18. Shew that x* + x sin x + 4 cos x is a minimum when
x = 0.

19. GQ is the perpendicular from the centre C of an ellipse

on the tangent at a point P: find the maximum value

oiPQ.
Result, a — b.

20. A straight line drawn from the extremity of the minor
axis of an ellipse cuts the major axis at Q and the

curve at P; from P the ordinate PN is drawn to the

major axis : find when the area PQN is a maximum.

Result. PN= j (V17 - 1).

T. D. C.



( 226 )

CHAPTER XV.

MAXIMA AND MINIMA VALUES OF A FUNCTION OF TWO
INDEPENDENT VARIABLES.

227. Definition. A function
<f>

(x, y) of two indepen-
dent variables is said to have a maximum value when
(/> [x + h, y + k) is less than <£ (x, y) for all values of h and k.

positive or negative, comprised between zero and certain

finite limits however small. The function is said to have a
minimum value when

<f>
(x + h, y 4- 1c) is greater than <j> (x, y)

for all such values of h and k.

228. To investigate the conditions that a function of two
independent variables may have a maximum or minimum
value.

Let u = <£ (x, y),

v = <f>(x + 0h,y + 0k);

then, by Art. 226,

du
. , du

dy
<f>(x+h,y + k)=u +h~+k^ + R,

where R — .—
LI

h" -T-5+ %hk -j—r + k*^,
ax ax dy dy

Now, if h -j- + k -J- be not zero, by taking h and k suf-

ficiently small, we can always make R less than h -j- +k -=-
,

and hence the sign of $ (x+ h, y + k) — $ (x, y) will depend on

that of h -j- + k j- , and will therefore change by changing

that of A and & ; it is impossible then that $ (a;, y) can have

a maximum or minimum value unless

, du , du
h-r- +kj- = 0.
dx dy
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Since the quantities h and k are independent, we must have

du du— = 0, — =0.
dx ' dy

Find values of x and y from these equations, say x — a,

y = b : let the values of -,—„ , -t—r , t-; , when these valuesJ da? dxdy dy*

are assigned to x and y, be denoted by -4, B, C, respectively.

We have then by Ait. 226,

<j> (a+ h, b+ k) - {a, b) =~ {Ah* + 2Bhk+ Ck*} + B„

where 21, =^& + Bh'k-^ +W^ + tf^

,

x being made = a, and y = b, after the differentiations have
been performed.

If A, B, and G do not all vanish, the sign of

<f>
(a + h, b + k) - <j> (a, b)

will, when k and k are taken small enough, depend on that of

Ah*+2Bkk + CV, or of^Ma^ +bX +AC-Bi
\.

If AC—B1 be negative, it will be possible, by ascribing

a suitable value to ^ , to make the last expression vanish and

change its sign ; and then
<f>

(a, b) is neither a maximum nor
minimum value of

<f>
(x, y). Hence generally we must have

AC— B* positive as a condition for the existence of a maxi-
mum or minimum. In this case A and C will have the same
sign, and AW + 2Bhk + Ck* will have the same sign as A or

C ; and if that sign be positive,
<f>

(a, b) is a minimum value

of
<f>

(x, y), if negative,
<f>

{a, b) is a maximum value.

We say that generally AC—B2 must be positive; because,

in fact, there may be a maximum or minimum value when
AC— B2 = 0, as we shall now proceed to shew.

229. To investigate the additional conditions for the ex-

istence of a maximum or minimum when AC—B2 = 0.

UAC-B2 = 0, then

Ah' + 2Bhk+Ck*=^(A
l
+ BJ;

Q2
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hence
<f>

(a + h, b + k) —
<f>

(a, b) is always of the same sign as

A, when h and k are taken small enough, except when -? is
rC

equal to — -7 ; and then the sign is as yet unknown and

further investigation is required. Let P, Q, S, T stand for

the values of

d?u d'u d*u d3u
dx" dx'dy' dxdy" d/f

respectively, when x — a and y = b; and let

r, 1 { ud'v ,.„ d*v 74 dVE^^\ h ^ + Ahk
d^dy + - + k

dy
x being made = a and y = b after the differentiations.

Suppose r is equal to — -;, then Ah*+ 2Bhk + C¥ vanishes,

and

<j> {a+h, b+k) -4>{a,b)=±- [Ph3+ 3 Qh'k + 3Shk*+ Tk3

} +E,.
Li

Hence if h and k be taken small enough the sign of

<j}(a + h,b + k)—<f>(a, b)

will be the same as the sign of

Ph3 + 3Qh*k + 3Shk* + Tk3

,

and will therefore change by changing the sign of h and k
;

it is impossible then that <\> (a, b) can be a maximum or mini-

mum value unless

Ph' + SQtfk+BShtf+Tk3

vanishes when j- is equal to—-, .

Suppose this condition to be satisfied, then the sign of

<f>{a + h, b+k)-<j>{a, b),

when t is equal to --, is the same as the sign of R
2 ; and

h 7?

when j is not equal to — -j , and /* and h are taken small
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enough, the sign of
<f>

(a + h, b + k) — <j> (a, b) is the same as

the sign of A. But in order that
(f>

(a, b) may be a maxi-

mum or minimum value the sign of <jb (a + h, b + k) — <b (a, b)

must be invariable when h and k are taken small enough.

Hence we have the condition that the sign of i?, when = is

equal to — -j , and h and k are taken small enough, must be

the same as the sign of A.
If these two additional conditions are satisfied

<f>
(a, b) is a

maximum value if A be negative, and a minimum value if A
be positive.

230. If A=Q, 5 = 0, and (7=0, we must proceed thus:

4> (a + h, b+k) - <j> (a, b) = i {Ph'+ ZQh'k + 3Shk*+ Tk3

} + Ba ,

Li

where P, Q, S, T, stand for the values of -y-
3 , ,

ctcc ax o y
when x = a and y = b, and

jb being made = a, and y = b, after the differentiations.

Hence, that
<f>

(a, b) may be a maximum or minimum, it

is necessary that P, Q, 8, T, should all vanish. Also, R
t

must be of invariable sign ; but the conditions to ensure this

are too complicated to find investigation here.

231. The following is another method of investigating

the conditions that a function of two independent variables

may admit of a maximum or minimum value.

Let m = <b {x, y), where x and y are independent : required
the maxima and minima values of u.

If y, instead of being independent of x, were equal to

some function of x, say ^ (x), then u would be a function

of one variable x. We should then have

du idu

dx \dx,

dy
dx1 -(»)+'(&)*'w+(£0ww + (s)+-w.
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In order that u may be a maximum or minimum, we must
have, by Art. 211,

dx
U>

therefore (*) + (*) +.(.).«.

Hence, since y is really independent of x, this equation must
hold whatever be the function -^'(x)

;

(§).„, (|).o.

In order that u may be a maximum, the values of x and y
72

derived from the last equations must make -=-^ negative,

whatever •>}?'(%) may be; hence, denoting by A, B, C, the

values which (t-j) ,
(
~r~r ) > aQd (

3—,) > respectively assume

for the values of a; and y under consideration, we require that

A + 2B^'{x) + C\ir'{x)Y

should be always negative, whatever i\r'{x) may be. Hence
as in Art. 228, A must be negative, and generally AG— B*
must be positive. Similarly, that u may be a minimum we
must have A positive, and generally AC—W positive.

The preceding method may be rendered more symmetrical

by supposing both x and y functions of a third variable t.

doc du
Putting for shortness Dx for j- , and By for -4-

, we have

NSMtH
fdu\ dDx fdu\ dDy
\dxj dt \dyj dt

Hence we must have
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Also for values of x and y found from these equations,

must preserve an invariable sign, whatever be the signs and
values of Dx and Dy. From this we deduce the same results

as in the preceding Article.

232. There is no theoretical difficulty in finding the maxi-

mum or minimum value of an implicit function of two inde-

pendent variables, nor in finding the maximum or minimum
value of a variable which is connected with any number of

other variables by equations, when the whole number of equa-

tions is two less than the whole number of variables. For
example, suppose we have two equations

/,(*> V< «. ")=0, ft
(x, y,e, u)=0 (1),

involving four variables x, y, z, u, and we wish to find the
maximum or minimum value of u. We may eliminate one
of the three variables x, y, z between the two equations

;

suppose we eliminate z ; then we obtain one equation con-

necting x, y, and u ; from this we find u in terms of x and y,
and proceed in the ordinary way to investigate the maximum
or minimum value of u. Or if we wish to avoid the elimina-

tion we may adopt the following method : consider x and y
as the independent variables and differentiate the given

equations (1); thus

dz df. du# +#
dx

dy dz

dz dx ' du dx

dz df
x
du

dy du dy

dx dz dx du dx

d£
+ df

i
dz_
+

df, du = Q
dy dz dy du dy

.(2).

dz dz
From these equations we can eliminate , and ,-, and

find -j- and -y-
; then for a maximum or minimum value of u
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dit du —
the values of -y- and -y- must be zero. Thus, more simply,

we may put -y- = and -7- = in equations (2), and then

eliminate -7- and -7- ; the two resulting equations combined

with (1) will determine the values of x, y, z and u, which may
correspond to a maximum or minimum value of u. And by
differentiating equations (2) with respect to x and y we can

find -y-j , , , , and -y-j , and so settle whether u is really

a maximum or minimum.

Practically the solution of problems of this class is facili-

tated by the method of indeterminate multipliers, which is

explained in the following Chapter.

233. The student will find it advantageous to illustrate

this Chapter by means of the Geometry of Three Dimensions.

If z =
<f>

{x, y) be the equation to a surface, to find the maxima
and minima values of z amounts to finding those points on
the surface which are at a greater or a less distance from the

dz
plane of (x, y) than adjacent points. The conditions — = 0,

dz
and — = 0, make the tangent plane at any one of the points

in question parallel to the plane of (x, y). The interpretation

of the case in which B* — A C= will be seen from what is

stated in Art. 235.

The method given in Art. 231 admits of clear geometrical

illustration. If, for example, there be a point on the given

surface which is at a maximum distance from the plane of

(x, y), then in passing from that point to an adjacent point,

along any curve whatever lying on the surface, we must ap-

proach nearer to the plane of (x, y). Now, by combining the

equation z =
<f>

(x, y) with y = yjr (x) , we obtain a curve lying

on the given surface, and by giving every variety of form to

1//- (x) we may obtain as many curves as we please. Hence

we see that if we put y - ifr (x), and leave the form of the

function i/r (x) arbitrary, we do not really break the restric-

tion that x and y are to be independent.
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234. A function u of two variables may have a maximum

or minimum value for values of x and y which render -j-

and -5- indeterminate or infinite. Such exceptional cases must

be examined specially, as there is no general theory appli-

cable to them. For example, suppose

u=(x* + y*)\

du _ 2x du _ 2y

dx~l tf+ffi' dy~ 3 {a? + y
2
)

1
'

Here, when x and y vanish -3- and -5- become indeter-

minate. If we put y = ax, we have

du 2 du 2a

dx 3^(l+as

)
s ' dy 3^(1+0^'

Hence -=- and -3- are infinite when x = 0, and y — 0. But

k is really a minimum then, for it vanishes only when a; and
y vanish and is never negative.

235. On a case of maxima or minima values of a function
of two independent variables.

If u denote a function of two independent variables x and y,

the values of x and y that make u a maximum or minimum
are found from the two equations

du _ du _
dx ' dy

If these equations are satisfied by a single relation between
x and y, we cannot determine a finite number of values of x
and y, that render u a maximum or minimum. This case we
propose to examine.

Suppose u = <f>(x,y) (1) (

Z-**%-y-* «.

where U, V, M are functions of x and y.
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If M=0 (3),

both -j- and -=- vanish.
dx dy

From equations (2) we deduce

d?u TT dM dU rj dM . . ,. c ,

-t-j = U. -j- +M . -j- =U . -j— when (3) is satisfied,

dlu TT dM „, dV Tr dM . .„. . . „ ,

t—. = "
• —7-+M . -j- = V . -r— when (3) is satisfied,

dy dy dy dy

d2
u „ dM

,
„.. dV „ tZilf , ....

4
. „ ,= F. -j— + Jf . -j- = V . -j- when (3) is satisfied,

dxdy ' dx dx ' dx

= U. —j- + M. -j- = U. -j— when (3) is satisfied.
dydx dy ' dy dy

But , , = , , always ; hence, when (3) is satisfied,

/ d*u V_ dM dM
\dx dy) ' ' dx' dy'

If then A, B, G denote the values of -^-,
„ , -j—=- , and -3-,

dx" dxdy dtf
when (3) is satisfied, we have

AG=W (4).

Now suppose that from M = 0, we find y in terms of x,

say y = yfr (x), and substitute in u ; we thus make u a function

of x only. On this hypothesis

_ /du\ /du\ dy

\dxj \dy) dxdx \dx) \dy.

= U.M+V.M%L, by (2),

= 0, since M = by hypothesis.

Hence, this substitution of ty (x) for y has reduced m to

du . . . .

a constant, since -5- vanishes without our assigning any parti-

cular value to x.
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Let us now return to equations (1) and (2). Change in

if> (x, y) the variables x and y to x + h and y + k respectively.

Calling u the new value of u, we get

dx dy [2 \dx* h dxdy h* dy*)

Let us now assign to x and y any values consistent with

(3), leaving however the ratio of k to h quite arbitrary, and
examine whether u' becomes less or greater than u when k

h~
and h are sufficiently diminished. The coefficient of - in

the above value of u, is

d*u 2k d'u k?(Pu 2& i?

dx* h dx dy h
1 dy2 h A2

Now by (4) this

A
[
1 +

hl)>

and is therefore necessarily positive if A be positive, and
necessarily negative if A be negative, whatever be the ratio of
k to h, except for that particular value of the ratio which makes
the expression vanish. Hence the conclusion will be this : if

we assign to x and y values consistent with M= 0, then when
h and k are sufficiently diminished, u is certainly less than u

if t-j be negative, and certainly greater than u if t—3 be

positive, excepting only when k has to h one particular ratio.

This latter case would require further examination, had we
not already shewn that by a certain supposition u is reduced to

a constant, so that when k has to h the one particular ratio,

u is ultimately neither greater than u nor less than u, but
equal to it.

The whole theory may be illustrated geometrically; for

example, if

s
,= ai — x' — y"+ (a:cosa+ysina)a

(1),

find maxima or minima values of z;
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dz
z ,- = — x + (x cos a + y sin a) cos a

= (y cos a— x sin a) sin a,

dz .

St.= -(j cos a— « sin a) cos a
;

therefore, when y cos a — a; sin a = (2),

jt and t- both vanish,
ax ay

Under these circumstances s becomes = + a.

Now equation (1) represents a cylinder having its axis

parallel to the plane of (x, y). Equation (2) represents a
plane which passes through the axis of the cylinder, and
which cuts the surface in two parallel straight lines. Along
the upper straight line we have z = a. All points in this

straight line are at the same distance from the plane of (x, y),
and at a greater distance than any points not in this straight

line. This straight line is in fact a ridge in the surface.

Another example may be seen in the equation

This surface is that formed by the revolution of a circle about
a tangent line which is the axis of z. The highest point of

the circle will by revolution generate a circle, all the points

of which are at the same distance from the plane of (x, y),

and at a greater distance than any adjacent points of the

surface.
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therefore 2 {a? — y
8
) = xy (y — x)

;

therefore 2 (x — y) (a? + xy + y
s
) = xy (y — x)

:

either then x = y,

or 2x* + 3xy + 2y
a =0.

The latter leads to an impossible result ; the former gives

Also

x =
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The first expression becomes — 1, the second becomes 0,

and the third becomes — sin* a, when the assigned values of

x and y are substituted. Hence -=—, -=-„ — l -= . \ is positive,

and m is a maximum.

3. Suppose u = e'^'"' (ax* + by
9
),

£=2x(a-ax*-by*)e-^\

^ = 2y(b-aa?-by*)e-*'S.

Here j- = 0, and -j- = 0, give as one pair of values x = 0,

y = 0. And these values make

d?u _ cPu _ d*u ,

dtf--
a

' dx~dy~~°' dtf
'

therefore u has then a minimum value.

Another pair of values is given by

x = 0,

and b — ax" — by* = 0,

that is, x = 0, and y = ± 1

.

With these values we have

Hence, if a is less than b, we have a maximum value of w,

and if a is greater than b, we have neither a maximum nor

a minimum.

There is only one other solution, namely, that found by
combining

y = 0, and a — ax* — by* = ;

therefore y = 0, and x= + 1

.
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Here we should find that if a is less than b, there is

neither a maximum nor a minimum, and if a is greater than

b, there is a maximum value of u.

If in this example a = b, we arrive at the anomalous case

considered in Art. 235.

4. Let it = sin a; + sin y + cos {x + y),

du
/ , \

-j- = cos x — sin (a; + y),

du . , .

j-= cosy- sin [x + y).

If -i- and -r- vanish, we must have
ax ay

cos x = cos y = sin (a; + y).

These equations admit of numerous solutions. For ex-

ample,

if cos x = cos y,

we have x = y, as one solution.

Hence we have cos x= sin 2x

= 2 sin x cos x
;

therefore, either cos x = 0, or sin x = %.

IT
If we take the first, and put x = y= -, we have neither

a maximum nor a minimum ; if we put

3tt

we obtain a minimum.

If we take sin x = \, aud put

ir

we obtain a maximum value for u.
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5. To find a point such that the sum of the straight lines

joining it with the angular points of a given triangle shall be
a minimum.

Let ABC be the given triangle; let BC=a, CA = b,

AB = c. Take any point P
and draw PM perpendicular

to AB; let AM= x, PM= y.

Also let AP=u, BP= v,

CP=w; the angle APM=6,
BPM=4>, GPM = <r. p

Then u* = a? + y\

tf =
(
c - xf + y\ a

-
M

w% = (b cosA — x)
1 + (b sinA — yf.

For a minimum value of u + v + w we must have

and

Now

du dv duo _ .

dx dx dx

du dv dw _
dy dy dy~

du x . n— = - = sin 0,
dx u

dv c — x . .

j-^ = - sin <p,
dx v

(1).

(2).

dw b cosA — x
dx w
du y .—- = i = COS 0,
dy u

dv y .

-j- = - = cos <i>,

dy v

= — sin -\jr,

dw
dy'

b sin A V - COSlfr.

Hence, from (1) and (2),

sin = sin <£ + sin yjr,

cos # = — cos <j> — cos ilr.
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Square and add ; thus

1 = 2 + 2 cos fy - <f>),

therefore cos {$— <£) = — £ = cos 120°.

Thus the angle CPB must be 120". Similarly it may be
shewn that APB and APC must each be 120°. Hence we
have the following result: describe on the sides of the

given triangle segments of circles each containing an angle

of 120°, and their common point of intersection is the point

required.

It is obvious that there must be a point for which the
proposed sum is a minimum, and therefore we need not exa-

mine the criteria depending on the second differential coeffi-

cients.

If the given triangle has an angle equal to 120°, then that

angular point is the point required ; if it has an angle greater

than 120°, the method fails to give the solution. It may
however be shewn that when the triangle has an angle

greater than 120°, the vertex of the obtuse angle is the point

required.

For suppose the point P inside the triangle and very near
to the angle B of the triangle ; let PB = r, PBA = a,

PBG = y; then

u = V(c
s — 2cr cos a + r

s
), v = r,

w = */(a* — 2ar cos y+ r2
).

Thus neglecting squares and higher powers of r we have
approximately

u+v+w=a+c+r— r (cos a + cos 7)

a+7 a—

7

= a+c + r — 2r cos——- cos —

—

i
.

Now 2 cos is less than unity if B is greater than

1 20°, and thus a + c + r— 2r cos —-— cos —— is greater

than a + c. And it is obvious that if P be outside the tri-

angle the sum of its distances from A, B, and C is greater

T. D. C. R
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than a + c. Therefore in passing from- B to any adjacent
point either inside or outside the triangle the sum of the dis-

tances is''increased ; and therefore at the point B the sum is

a minimum.

The values of -3- and -j- take the form - at the point

B ; and this is the reason that the solution failed to indicate

the point B. We have already remarked in Art. 234 that a
maximum or minimum value may exist corresponding to
such indeterminate values of the differential coefficients.

6. Find the maximum and minimum value of

{hx + ky — a) {hx + ky — b)

1 + x2
-+-f

'

Let u denote the expression, and let v denote

l+tf + tf;

then u = v'
1
(hx + ky- a) {hx + ky — b);

du
__

h {2hx + 2ky -a — b) _ 2x (hx+ ky -a) (hx + ky- b)

dx v v*

du _ k (2hx + Iky —a — b) _ 2y {hx + ky —a) (hx + hy — b)

dy v v*

Put -j- = 0, and -=- = ; thus we deduce
ax dy

x y

A
=
&
=rSupp0Se '

Substitute rh for x and rk for y in -3- = or -j- = ; we

shall obtain after reduction the following quadratic equation
in r:

r*{h? + k*){a + b)+2r{h', + k*-ab)-{a+b)=0;

thus the values of r are possible, and one is positive and the
other is negative.
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If we differentiate the values of 3- and -=- . and after dif-
ax ay'

ferentiation use the relations which arise from -=- = and
dx

du

dy
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Since AC — B* is positive A and G have the same sign,

and that sign is the same as the sign of A + C, and therefore

the same as the sign of

a + b-(V + ¥)r
r

If a + b is positive this expression is positive or negative

according as r is positive or negative ; if a + b is negative

it is positive or negative according as r is negative or posi-

tive. Thus we can discriminate between the maximum and
minimum value of w.

Two particular cases which have been excepted above
remain to be noticed

I. Suppose a = b. Here we shall have

-j- = 2jT
2 {hx+ky —a) [hv — x (hx + ky — a)},

-J-
= 2 if

2
(hx + ky — a) {kv — y (hx + ky —a)}.

ay

If we suppose hx + ky — a — we arrive at the case dis-

cussed in Art. 235, in which there is not strictly a maxi-

mum or minimum. If we take the other factors in -=- and
ax

-r- and put

hv —x {hx -)- ky — a) = and kv —y {hx+ky— a) =0,

we shall obtain

h k

a a

these values will be found to make u a maximum.

The quadratic equation for r, when a = b, has for its roots

a 1
f — Ti
—n or r — ;

h* + k2 a'

the former value leads to values of x and y which satisfy

hx + ky — a = 0; the latter leads to the values

h k

a ' " a

II. Suppose a + b = 0. The original investigation be-

comes inapplicable ; it may be shewn that the only values of
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x and y which make -7- and -7- vanish are x = 0, y = ; and

these give a minimum value to u.

7. Find the maximum value of x%

y
i (6—x—y).

Result. Maximum when x = 3, y = 2.

8. If m= (2ax — Xs

)
(2by — y'), find its maximum or mini-

mum value.

Result, x = a, y = b, make u a maximum.

9. If u = x* + y* — 2x* + 4xy — 2y
!
, shew that when x = 0, and

y = 0, u is neither a maximum nor minimum ; when
x = + V2, and y = + «/2, m is a minimum.

10. If w=y-8/ + 18y
1 -82/+a;3 -3a;2 -3a;, then 3 + 4 «/2

is a maximum value of u and — 6 — 4 ^2 is a minimum
value of u.

11. If u = x* + xy +y* — ax — by, then J (a& — a2 — V) is a
minimum value of u.

12. Divide a number n into three parts, x, y, and a, such

that -JL + ——+ sL shall be a maximum or minimum,
2 3 4

and determine which it is.

Result. — = -^- = - a maximum.

13. If u = xs + y* + 3axy, then a" is a maximum value of u.

14. Find the maximum or minimum of x (x
1
+y*) — Saxy.

1 -f- x* -f- "W
2

15. Find the maximum or minimum of f- .

1 — ax — by

Result. g-g-^q+g + P) .

with the upper sign there is a maximum, with the

lower a minimum.

16. If u = *J{(c— x) (c-y) (x + y — c)}, shew that it is a

2c
maximum when a; — y= — ._
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en a a + bx + cy , b
-17. Shew that -7— =—^ is a maximum when x = -

,

V(l+ar + jr) «

c

18. Shew that xeytxsini' has neither a maximum nor a mini-

mum.

19. Find the minimum value of x + y + z, subject to the

condition

?+*+ C = l.
x y z

Result. When —r—,i = —r — V« + >Jb + Jc.
ya >Jb njc

20. Find the minimum value of xT
y

qz
T
subject to the same

condition as in the preceding Example.

Result. When — = ¥¥ = r— = p + q + r.

b

21. Having given the three sides of a triangle, find a point

within it, such that, if perpendiculars be drawn from
it to the sides, their continued product shall be a

maximum. Shew that straight lines joining this point

with the corners of the given triangle will divide it

into three equal triangles.

22. Find the maximum value of xyz subject to the con-

dition

x!

y
2

z*
,

a b c

Result. 0-r
23. Determine a point within a triangle, such that the sum

of the squares on the distances from the three sides is

a minimum.

Result. If p, q, r, be the perpendiculars on the sides

a, b, c, respectively, then

p _q r 2 area of triangle

a
~~

b
~

c
~ ' a'+b' + c'
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24. Determine a point within a triangle such that the sum
of the squares on the distances from the three angles

is a minimum.

Result. The centre of gravity of the triangle,

25. Through a point within a triangle three straight

lines are drawn parallel to the sides dividing the

triangle into three parallelograms and three triangles :

shew that the sum of these triangles is least when the

straight lines are drawn through the centre of gravity

of the triangle.

26. A triangular space is to be diminished by fencing off

the corners, each fence being circular and having the

nearest corner as centre : shew how to leave the

greatest possible central space with a given length of

fence.

Result. The radii of the circular fences are equal.

27. Given the sum of the three edges of a rectangular

parallelepiped, find its form that its surface may be
a maximum.

28. In a given sphere inscribe a rectangular parallelepiped

whose volume is a maximum. Also one whose surface

is a maximum.
Result. A cube.

29. Of all triangles of the same perimeter find that which
will generate the greatest double cone by revolving

about a side.

Result. The fixed side must be two-thirds of each of
the other sides of the triangle.

30. A rectangular parallelepiped is so constructed that a
plane which passes through three of its corners, but
through no edge, contains a point whose distances

from the three faces adjacent to one of the other
corners are given. Shew that the shortest diagonal

which such a parallelepiped can have, is (a$ + $ + cty>
where a, b, c are the given distances.
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CHAPTER XVI.

MAXIMA AND MINIMA VALUES OF A FUNCTION OF SEVERAL

VARIABLES.

236. Let u = <]>(x, y, z) be a function of three independent
variables, of which we require the maxima and minima values.

By an investigation similar to that in Art. 224,

<f>
(x + h, y + k, z + T) — <£ (x, y, z)

, du , du ,du

ax ay dz

¥ d'u It? d?u P d?u ,, dSi
, 7 d2

u, . , d?u

2 da? 2 dy2
2 dz* dydz dxdz dxdy

where R is a function involving powers and products of h, k, I

of the third degree, which may be expressed for abbrevia-

tion by
1 f, d

7
d , d)

s

\3\
h
dx+

k
dy

+ l

dz\
V'

v denoting tf> (x + 0h, y + 0k, z + dl).

If we make h, k, I small enougb, the sign of

<j> (x + h, y + k, z + l) — <j>(x,y, z)

will in general depend upon that of the terms involving only

the first powers of h,k,l; hence, to ensure a maximum or

minimum, we must have

, du , du , du
hj-+k-T- +l-j- = 0,
ax ay dz
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and therefore, since h, k, I are independent,

dJt = Q ^ = ^ = 0.
dx ' dy ' dz

Let values of x, y, z be found from these equations, and

d2u d*u

dx2 ' dy"
when these values are substituted in -^-j , -5-5 , . . ., let

d2u _ . d2u _ R d 2
u _ p

d^~ ' df~ ' ~£f~ '

d?u ., d2u _ R , d'u _ „,

dy dz ' dxdz ' dx dy

The sign of

<f>(x + k, y + k, z+l)—<t)(x,y, z)

can, with the values of x, y, z just found, be made to depend
on that of

Ah* +M*+ CP+2A'kl + 2B'hl+ 2Chk (1).

Hence, that u may have a maximum or minimum value,

the expression (1) must retain the same sign, whatever be the
signs and values of h, k, I comprised between zero and fixed

finite limits. If we put

h = sl, k = tl,

it follows that

As2 + Bf + C+2A't+2Bs + 2C'st (2),

must be of invariable sign, whatever be the signs and values

of s and t. Multiply (2) by A, and rearrange the terms ; then

(As +B + Ct)>+ {AB- C'
2
) f + 2 {AA - EC) t + AC-B'2

(3),

must retain an invariable sign.

Hence, (AB - C'
2
) t" + 2 (AA' - B' C) t+ A G - B" must

be incapable of becoming negative ; therefore

AB — C'
2 must be positive, and (4),

{AA' - B'CJ less than {AB- C'
2

)
[AC-B'2

) (5)

;

(4) and (5) are the conditions that must be satisfied in order

that u may be a maximum or minimum. Conversely, if they
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are satisfied, u is a maximum or minimum ; for then (3) is

necessarily positive, therefore (2) has always the same sign as

A, and u is a maximum if A be negative, and a minimum if

A be positive.

Hence the necessary and sufficient conditions for the

existence of a maximum or minimum value of a function u of

three independent variables, are, that the values of x, y, z

drawn from
du _ n du n du _
dx ' dy ' dz '

, „ ,
d2ud"u ( efu \

5

should make -7-3 -j-.
t
- , , I positive,

. (d2u d*u cPu d?u V , ..

and -j-. -=

—

T —;
—=- -j—j- less than

V aa; ay dz ax dy dx dz)

(<Pu dSt. _ / tPu
Yj

j^w a% _ / gw
jaV ay" V^ flfy/

J [dx
1 dz1 \dx dz

It follows of course from these conditions, that

<Pu cPu I tiPu

-J
must be positive,

dx* dz2 \dx dz

and thus -r~, , t—5 , -5-4 must all have the same sign, and w
oar ay az

is a maximum if that sign be negative, and a minimum if it

be positive.

From the conditions (4) and (5), we should conjecture by
the principle of symmetry, that BC—An

will also be positive

if (4) and (5) hold. This is easily verified, for from (5) we
find that

A {ABC+ 2A'B'C - AA" - BB'* - CC*}

is positive, and therefore, since A and B have the same sign,

by (4)

B {ABC+ ZA'B'C - AA'* - BB" - CG"}

is positive, and therefore

(BB' - A'C'Y is less than {BC- A 2

)
{BA - C'%

from which it follows that BC— A" is positive.
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237. Example. Let u=, ~. ng .

dw yz (gy — a;
8

) w (ay — a;
2
)

rfa; (a + a;)
8

(a; + yfiy+s) («+"&)
~~

a; (a + a;) (a: + y)

"

Similarly, *!, M (a-z- y
2
)

rfy
3,
(ar+y) (y+jg)

'

du _ u (by — z
2

)

dz z (y + z) (z + b)'

Hence, if ay — x* = 0, xz — y* = 0, and Jy — z
2 = 0, u may be

a maximum or minimum : these equations give

x _y z _b
a x y z

'

therefore each of these fractions = A /(-.-.-.-] or A /-

.

V \a x y zj 'y a

Call this r ; then

x=ar, y = xr = ar1

, z =yr = ar3
.

Proceeding to the second differential coefficients of u, we
have

d*u _ 2xu „

dx' x(a + x) (x + y)

the terms included in the &c. being such as vanish when the
specific values are assigned to x, y, z.

2w 2
Hence A =

aV(l + r)
! aV(H-r)8

Similarly B, C, ... can be found, and we shall finally arrive
at the result that u is a maximum.

238. Suppose it required to determine the maxima and
minima values of a function

<f>
(x, y, z, ...) of m variables,

these variables being connected by n equations, of which the
general form is

F
T (x,y,z,...) = (1).

The m variables involved in $ are of course not all inde-
pendent, since by means of the given equations n of them
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may be expressed in terms of the remaining m — n. The
simplest theoretical method of investigating the maxima and
minima values of

<f>
would be to express by means of the

given equations the values of n of the variables in terms

of the rest, and to substitute these values in
<f> ; thus

<f>

woidd become a function of m — n independent variables,

and we might proceed to ascertain its maxima and minima
values in the manner already given for functions of one, two,

or three independent variables. But this method would be
often impracticable on account of the difficulty of solving the

given equations, and the following method is therefore

adopted.

Suppose x, y, z... all functions of some new variable t, of

which consequently <j> becomes a function. Put for shortness

dx _ dy _ dz ~

dr Dx
' I= Dy> dt=

Dz-

tnen
d± =^ Dx+ d*Dy+

d±Dz+.
at dx dy J dz

From the n given equations (1) we deduce

dF, n d& _ dF
t „

-d£
Dx+

-di
Dy+ -di

I)z + " =0
u/jLi U.U as

dx dy J dz

.(2).

.(3).

dF„ r, dFn ,, dF. _

By solving the linear equations (3) we can express n of

the quantities Dx, Dy, Dz... in terms of the remaining
m — n. Substitute these values in (2), then only m — n of the

quantities Dx, Dy, Dz ... remain, and we have a result

which may be written

t̂
=X.Dx + Y.Dy + Z.Dz... + Q.Dq (4),

where X, Y, Z, ... do not involve any of the quantities

Dx, Dy, Dz, ... Since, consistently with the given equa-

tions, we may consider the m — n quantities Dx, Dy, Dz, . .

.
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to be quite arbitrary, it follows, in the same manner as in

Art. 232, that if is to be a maximum or minimum, we
must have

X=0, F=0, Z=0, # = (5).

From these m — n equations, combined with the n given

equations, we can find the values of the variables for which
(j> may be a maximum or minimum. To determine whether

, . . d*d> „
<p is a maximum or minimum we must express -j±- . h rom

(4), with the use of (5), we have

d 2
d> dX ._ ., dF_ _ dZ n _

dt dx x
' dx dx

+

We should then examine whether the above expression

retains an invariable sign, when the specific values of the
variables x, y, z, ... are used, whatever be the arbitrary

values assigned to Dx, By, Bz, If it does, then
<f>

is

a maximum if that sign be negative, and a minimum if it

be positive.

239. The practical solution of any example according to

the above theory is facilitated by making use of indeterminate

multipliers. Multiply the first of equations (3) by \, the
second by \

2 , ... the 71
th by \„, the values of \, \, ... \n

being at present undetermined. Add the results to (2), then
we may write

d±= <d± dF\ dJ\ ^dF,
}

dt [dx ' dx ^ dx 3 dx '"]

+£ + ».£ «.£ +».£+••}*
+ (6).
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If we equate the coefficients of n of the quantities Dx,

Dy,... to zero, we shall arrive at n equations for determining

\, \, ... X„. Substitute these values of \, \, ... XB , in the

remaining terms of (6), and -^ takes the form given in (4)

;

we must therefore equate to zero the coefficients of the re-

maining m — n of the quantities Dx, Dy, . . . Hence we have
the rule :

" Equate to zero the coefficients of every one of the

quantities Dx, Dy, ... in (6) ; the m equations thus found,

together with the n given equations, will enable us to elimi-

nate the n quantities \, X„ ... Xn , and to find the values of

the quantities x, y, z..."

240. The concluding part of the theory in Art. 238, in

which we are directed to examine the sign of —^ , frequently

becomes in practice excessively complicated. In fact the

examples of this method are generally such as allow us to

predict that a maximum or minimum must exist, and to dis-

pense with the second part of the investigation.

EXAMPLES.

1. Find the maximum or minimum value of

x' + y' + z*,

subject to the conditions

ax + by + cz - 1 = 0, ) ,.,

ax + b'y 4- c'z — 1 = 0, )

"

Putting cj> for a? +f + z\ "we have

-i = 2xDx + 2yDy + 2zDz.
at

Also from equations (1),

aDx + bDy + cDz = 0,
| ^

a'Dx+ b'Dy + c'Dz = 0,

Hence, multiplying equations (2) by X, and \ respectively,

we may put
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? = (2* + \a + V) Z>a; + (2y + Xfi + \V) Dy

+ (2z + \c + \c')Jh.

Therefore 2x + \a + X
t
a' = 0,

|

2y + X
1
b+\b' = 0, [ (3).

2z + \c + \c' = 0, J

Multiply equations (3) by a, b, c, respectively and add ; then
we have, by (1),

2+\(a2 + J
2 + c

!!)+\2
(aa'+W+cc') = (4).

Similarly,

2 + \(a 2 +b'2+c'*)+\(aa'+hb'+cc')=0 (5).

Equations (4) and (5) determine \ and X
2 , and then by (3)

we find x, y, z. Also multiplying (3) by x, y, z, respectively

and adding, we have
2<£ + \ + \ = 0,

which finds <j>. This is the solution of the following question

in Geometry of Three Dimensions :
" In the line of inter-

section of two given planes to find the nearest point to the

origin of co-ordinates." From the nature of the question it

is evident there must be a minimum value of <£.

2. Determine the greatest quadrilateral which can be
formed with the four given sides a, /3, 7, 8. taken in this

order.

Let x denote the angle between a and /3, y the angle between
r/ and 8. The area of the figure is \ (a/3 sin x + 78 sin y),

therefore we may put

<f>
{x, y) = a/3 sin x + 78 sin y (1).

If we draw a diagonal of the figure from the intersection

of /3 and 7 to the intersection of a and 8, we have from the

two different values which can be found for the length of this

diagonal, a
2 + /3

s — 2a/3 cos x = 7
2 + S

2 — 278 cos y.

Thus a
2 + /3

2 -2a/3cosx-72 -82 + 27Scos3/ = (3).
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From (1) and (2),

ad* _Z = a/3 cos xDx + 78 cos yDy (3),

= a/3 sin xDx — yh sin yDy (4),

therefore f = a/3
(
cos x+ **««*y\ Dx f5) .

at
{

smy
)

•

'

Hence, since the coefficient of Dx must vanish,

sin (x + y) = 0.

Therefore x + y must be zero, or some multiple of 71- ; the
only solution applicable to the present question is

x + y=-rr (6).

Hence cos y = — cos x : substituting this value of cos y in
equation (2), we have

COS X = i—pr i-s- .

2(a/S + 78)

Since by (5) f = «P sin (x + y)
at smy

we have, neglecting such terms as vanish, by (6),

which, by means of (4) and (6), becomes

smy \ 76/ v
'

Hence, since -~ is negative, we have found a maximum

value of (/>, namely, when the sum of two opposite angles of

the figure is equal to two right angles.

Thus the quadrilateral must be capable of being inscribed

in a circle.

It may now be shewn that when all the sides of a recti-

lineal figure are given the area is greatest when the figure

can be inscribed in a circle. For let PQ, QE, RS, STiepre-
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sent any four consecutive sides. Then, by what we have
just seen, P, Q, R, 8 must lie on the circumference of a

circle : for otherwise the area could be increased, by leaving

the rest of the figure unchanged, and shifting PQ, QR, R8
until the points P, Q, R, 8 did lie on the circumference of a

circle. Similarly Q, R, S, T must lie on the circumference of

a circle. And this circle is the same as the former circle, for

it is the circle described round the triangle QRS. In this man-
ner we shew that when the area is greatest the figure must
have all its angular points on the circumference of a circle.

Suppose an indefinitely large number of consecutive sides

of the figure to become indefinitely small : then the cor-

responding portion of the boundary of the greatest area be-

comes an arc of the circle of which the remaining sides are

chords. Hence we obtain the following general result : if an
area is to be bounded by given straight rods and strings, the

area is greatest when the strings are all arcs of the same
circle, and the straight rods all chords of that circle.

The following problem is analogous to that which we have
been considering. Required to determine the greatest area

which can be inclosed by a quadrilateral three of whose sides

are given.

Let a, b, c denote the lengths of the three given sides,

taken in order of contiguity. Let 6 denote the angle between
the sides b and c, and

<f>
the angle between the side a and

that diagonal which passes through the angle between a and
b. Then the area of the figure is

- be sin + - a >J(b* + c
!— 2bc cos 6) sin (p.

z z

This is a function of the two independent variables 6 and $ ;

but we can obtain the result which we require without going

through the usual process for finding the maximum value of

a function of two independent variables. For we see that

to ensure the greatest area <£ must be a right angle. In a

similar manner we might shew that the angle between the

side c and that diagonal which passes through the angle

between b and c must also be a right angle. Hence the qua-

drilateral figure must be capable of being inscribed in a circle

of which the side not given must be the diameter.

T. D. C. S
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It may now be shewn that when all the sides of a recti-

lineal figure are given except one, the area is greatest when
the figure can be inscribed in a circle of which the side not

given is the diameter.

For let QR represent the side not given, and PQ an adja-

cent side. Then the whole figure must be capable of being

inscribed in a circle : for otherwise the area could be increased

without changing the length of any side. And the angle

QPR must be a right angle : for otherwise we might leave

PQ and PR unchanged, and by changing QR replace the

triangle PQR by a larger triangle. And since QPR is a right

angle, QR is a diameter of the circle surrounding the figure.

3. Find the maximum and minimum value of v
1 when

«s = aV + &y + cV (1),

while x' + y*+ z
1= 1 (2),

and Ix + my + nz — (3).

From (1), (2), and (3), we deduce

= a2xDx + b
iyDy + c'zDz (4),

0= xBx + yDy + zDz
(5),

0= Wx +mDy+nDz (6).

Multiply (5) by \ and (6) by \ and add to (4) ; then
equate to zero the coefficients of Dx, By, Dz ; thus

a'x+X^ + Xj, =
(7),

Wy+\,y + \m=0 (8),

c'z +\z+\n =0 (9).

Multiply (7) by x, (8) by y, and (9) by z, and add ; then
by (2) and (3),

aV + &y + cV + >., = ().

Hence \ = — u!
.
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Therefore, from (7), (8), and (9),

y

and thus, from equation (3),

*
"*" 3 1,2

"""
IIS S

This equation is a quadratic in ws
, from which two values

of u% can be determined, one of which will be a maximum
and the other a minimum. It is obvious that a maximum
and a minimum value of w2 must exist, for x, y, z, cannot all

vanish simultaneously, and no one of them can be greater than
unity ; hence w2 must he between the limits and a2 + 6

2 + c
2
.

4. Find the values of x, y, z, when x'yz* is a maximum
or minimum, subject to the condition

aV + 2by
3 + z* = c\

We have, putting u for x*yz*,

ix3yz2I)x + x'^Dy + 2x*yzDz = 0,

UDx Dy 2Dz\
, vu\ + -^ + =0.

I
x y z )

Also cfxDx + SbtfDy + 2z*Dz = 0.

4
Therefore - + \a2

as = 0,
x

- + 3Xiy= 0,

-+ \a" = 0.
z

S 2

or
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Multiply the first of these equations by x, the second by
2w
-~ , and the third by z, and add ; then
o

therefore X = — -r- t .

„ s , 12c
1

, , c
4

4 3c'
Hence oV =— , btf = — , z* = -- .

5. To find the maximum and minimum value of r8 when

r*=(x-aY + (y-l3y+(z-v)',

the variables and constants being connected by the equations

J+fc-*-?-
1 w-

&c + wiy-fn«=p , (2),

la+ mfi+ny = p (3),

m b*m en K '•

[The student who is acquainted with Geometry of Three
Dimensions will see that (1) is the equation to an ellipsoid,

and (2) is the equation to a plane ; a, /S, 7 are the co-ordinates

of the centre of the curve of intersection of the plane and the

ellipsoid, and r is the radius vector drawn from the centre

of this curve to any point of the curve.]

Since a* is to be a maximum or minimum, we have

{x-a)Dx+(y-p)Dy+(z-y)Dz=() (5);

also from (1) and (2)

xDx yDv zDz . ...

Wx +mDy+ nDz = (7).
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Multiply (6) by \, and (7) by fi, and add to (5) ; then

equate to zero the coefficients of Dx, By, and Bz ; thus,

Xx
x — a + —s + ul =

a r

Xz
s — 7 + —j-+/*n =

..(8),

..(9),

.(10).

Multiply (8), (9), and (10) by x-a, y - /3, and z-y
respectively, and add ; thus by (2) and (3)

. (x(x-a) y(y-ff) z(z-«/)}_+
( a! +

b
3 +

c' J
'

that is, r* + Xjl-^-^LjJ = 0...(ll).

Now by (4)

f3 _ y al+ ftm+yn P
a'l Fm c

2n aT + #W + cW o'P+JV+cV
thus (11) becomes with the help of (2)

^-l}-X£say.

Thus (8), (9), and (10) may be written

r
8 "

1 + ^)
= a -^

.(12).

By substituting the values of x, y, and z from these in (2),

we obtain

also

Ika? (a — fd) mhV (/3 — fim) nh? (7 - fin) _
£aa

-f-r
2 + W+7* +~W+? P '

+ w»/3 -fZa ny =/>•
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By subtraction

ka2 + r*
+

kb' + r'
+

kc' + r*
'

T OL T Q "r^ ™
Now kfi. + -jT , &/a + tj- > aQd fy* + » are °* equal value

at o m c /i

by (4) ; and this value cannot be zero, because then by (12)

we should obtain the inadmissible results x = a, y = /S, z=<y.

Hence dividing out we have

aV bW
,

cV
fcj

2 + r
a +

A;6
:1 + r

s +
yfcc

a +rt_

This quadratic will give two values of r
2
, one will be

the maximum value of r* and the other the minimum value.

The product of the values of r* will be

ffaW (P + m' + w")
.

aV + iW + cW '

and 7r times the square root of this product is the area of

the curve of intersection of the ellipsoid and plane ; hence

taking the positive value of the square root we have for

the area

rrabc (oT +SW+ cV - p*) V(P + m 8 + n1

)

'

(oT +W+cW)*
C. Find the maximum or minimum value of u when

w = a?y*z
l

, and 2x + 3y + 4« = a.

Result. [ - I is a maximum value.'<•

(I)
>

Find the minimum value of w from the equation

u = x* + y
2 + z'+ ,

the variables being connected by the equation

ax + by +cz+ = k.

k2

Result, u = -=—rs =

—
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8. Find the minimum value of

a? + y* + z* + x — 2s — xy.

Result. x = — f , y = — h z=\.

9. Find the minimum value of x* + y* + z', where xyz = c
s
.

10. If t, y, z are the angles of a triangle, find the values of

x, y, z which make sin
m
a; sin"# sinpa a maximum.

11. Find the maximum or minimum value of xT
y
qz

T
sub-

ject to the condition Ix + my + nz = a. Hence find the

parallelepiped of maximum volume which has for its

three edges the axes of x, y, z, and has the intersection

of its opposite edges in a given plane.

12. If aa? 4 bxy + cy* =/, and r* = x* + y
a
, shew that the

maximum and minimum values of r' are given by the

equation

(&
2 - 4ac) r*+ if(a + c) r

2 - 4/
2= 0.

13. Find the maximum value of

{ax + by + cz) ^-amvhw

z> n Pa $ Mc
Result. x = ~j, y = r

ai, * =^ ;

where ± =^fe +
^+ty

.

14. A given volume V of metal is to be formed into a

rectangular vessel ; the sides of the vessel are to be
of a given thickness a, and there is to be no lid. De-
termine the shape of the vessel so that it may have a

maximum capacity.

Result. If x, y, and z, are the external length, breadth,
and depth

;

fV-a\fV-a^i x
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15. If r*= a? + if + z\ where

ax' + by* + cz* + la'yz + 2b'zx + 1c xy = 1,

and Ix + my + nz = 0,

find the maximum and minimum values of r'.

Result. They are determined by the equation

- 2W (a - 1) - 2nlV (b - ^) - 2lmc (c - i)

+ 2wm?£'c'+ 2wZc'a'+ 2lma'b'- la"- m'b"- n'c'
2 = 0.
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CHAPTER XVII.

ELIMINATION OF CONSTANTS AND FUNCTIONS.

241. We may make use of differentiation in order to

eliminate from an equation involving variables and constants

one or more of the constants. For example, let

(y-bf+(x~ay-ci=0 (1).

Differentiate three times, giving

(y-tyjjt- +x-a=0 (2),

c-»>3+®'+— w.

<»-»>3+'2S- «
From these four equations we may deduce an equation

free from the three constants : we have

dy _ x — a

dx y — b
'

d*y _ _ {x-a,y+(y-b) s _
da? {y-bf {y-bf

d 3
y _ dx dx* _ 3c

!
(a; — a)

dt°— y-b — (y-b)° •
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242. In general, if we have an equation between x and y
and n arbitrary constants, and we differentiate m times suc-

cessively, we have m + 1 equations between which we can
eliminate m constants, and this will give a result involving

dmy
-j-% and inferior differential coefficients of y. There will

also ben-m constants in the resulting equation ; and as we
can choose at pleasure the to constants we eliminate, we can
form as many resulting equations containing n —m constants,

as the number of combinations that can be formed out of

n things taken m at a time ; that is,

n (n — 1) ... (n — m + 1)

Each of these resulting equations is called a differential

dmv
equation of the mtb order, -y-=| being the highest differential

coefficient of y which occurs in it.

When the original equation is differentiated n times suc-
cessively, we have n + 1 equations, between which all the
constants can be eliminated, giving us a differential equation
of the nth order.

243. If we recur to the example in Art. 241, we have
for one of the three differential equations of the first order,

If we find o from this equation in terms of x, y, b, and

-~
. and substitute in the given equation, we obtain another

differential equation of the first order. If we find b in terms

of x, y, a, and -p , and substitute in the given equation, we

obtain the remaining differential equation of the first order.

The three differential equations of the second order which
can be obtained by combining equations (1), (2), and (3) of

Art. 241, are
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dx*

a=x-
dx \ \dx)

)

d%
da?

~ m •

It will be found on trial, that if we take any one of the

differential equations of the first order, and differentiate twice,

we shall obtain the same result if we eliminate the two
constants involved in these three equations, as we have
already found in equation (5) of Art. 241. Also, if we
take any one of the differential equations of the second order,

differentiate once, and eliminate the constant involved in

these two equations, we shall still arrive at the equation (5)

of Art. 241.

244. The process by which, as in the preceding Article,

we may deduce differential equations by differentiation and
elimination of constants, has not in itself much interest or

value. But the method of passing from the differential

equations to the primitive equation from which they were
deduced, forms a most important branch of mathematics. In

fact all investigations in physical science lead to differential

equations, which must be solved before we can be said to

understand the subject we are considering. We do not

enter here on the solution of differential equations, but it

is usual, in treatises on the Differential Calculus to devote

some space to the consideration of the formation of such

equations by elimination, as this process throws light on the

methods to be adopted for their solution.
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245. Not only constants may be eliminated, but functions.

Suppose, for example,

y — sin x ;

then -f = cos x
ax
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Hence this last equation is true whatever be the form of

the function
<f> ; for example, if z = log (

- ) , or z = sin - , or

z = ( -
J

, in each case we have that equation subsisting.

247. Suppose u =
<f>

(v), where u and v are known func-

tions of x, y, and z, but the form of
<f>

is not given. The
variables x and y are supposed independent If we differen-

tiate both members of the equation with respect to x and y
successively, we have

du du dz _ , . (dv dv dz

}

dx dz dx~™ ^ ' \dx dz dx\

'

du dudz _.,, * {dv dvdzl

dy dz dy \dy dz dy)
'

Therefore, whatever be the form of
<f>,

/du du dz\ /dv dv dz\ _ (du du dz\ /dv do dz\

\dx dz dx) \dy dz dy) \dy dz dy) \dx dz dx)
'

In other words we have eliminated the arbitrary func-

tion </>.

248. Suppose

two known functions of x, y, z, which enter into an equation.

*>,y,*,<Mai),<MaO}=0 (1).

$j and
<f>t

being arbitrary functions. If we form the equations

dF n dF^ = °' ^=° <*>

d'F n d'F A d*F n

d^=°' dxlTy=°' -dy
=0 <»)•

we introduce the unknown functions

fc'to, *'(«,). *."<*,). #'(«,).

and these, with ^(aj, and $,(a,), form six quantities to be
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eliminated between the six equations (1), (2), (3). ThLs
cannot generally be effected. Proceeding to the equations

d3F _ d*F cT.F ^Z_n ^
<fo

s ~ ' <*r
2
o!y * dxdtf~"' dy*

~ Kh

we shall introduce only too new unknown functions, namely

fa"' {<*
t
) and fa!" (a a). Hence we can obtain by elimination an

equation between z and its partial differential coefficients with
respect to y and x of the third order inclusive, which will

be free from the functions fa (a,) and fa (& 2)
and their derived

functions. Since we have ten equations and eight quantities

to be eliminated, two resulting equations can generally be
obtained.

249. We say that generally, in the case supposed in the
preceding Article, we cannot eliminate the arbitrary functions

by proceeding as far as the second derived equations. Cases
however occur, in which, owing to the forms of a, and a,, this

elimination can be effected ; for example, suppose

z = fa{x + ay) + fa[x-ay).

Here -^ = <£/ (x + ay) + </>
a

' (x - ay)

,

dz
-j = <*fa[ i

x + av) - aK (
x - av)<

d'z

-fa?
= <t>" i

x + ay) +K (as - ay),

therefore

72~ =aW (x + ay) + aty," (ar - ay)

;

<£z = s^
dy1

dx'

'

250. Suppose we have an equation between three vari-

ables of the form

F{x,y,z, ^(o,), fa(a,), faK)}=0,
involving n arbitrary functions fa, fa, fa of the n known
functions a,, o„, a^ respectively.
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If we proceed in the manner of Art. 248, and deduce

from this equation all its derived equations up to those of the

i»th order inclusive, we shall obtain

1+2 + 3 + 4+ {mPX)

x, . (to + 1) (to + 2) . .
• ;.

,

equations, that is equations, .-.

'A
_

The number of unknown functions will be (to+ 1) n, and

therefore, that we may be able to eliminate the arbitrary

functions, we must have generally

-^ greater than (to + 1) n,
At

therefore —-— greater than n
;

therefore m = 2n — 1 at least.

If to = 2n — 1, the number of equations will be w (2n + 1),

and the number of functions to be eliminated, 2^; hence,

there will be generally n resulting equatious.

251. Suppose however that the known functions a, , a
s , . . .a„

are all the same function ; we shall find that it will be suffi-

cient to proceed to the derived equations of the mth order

inclusive, in order to be able to eliminate the arbitrary func-

tions. For let

F{x,y,z, &(*), <£», <Ma)}=0;

differentiate with respect to x and y ; thus

dF dFd£ dF /da dadz\_
dx dz dx da \dx dz dx)

dF dF dz dF /da dadz\ n

dy dz dy dx \dy dz dyl

IdaW
Eliminate -j- ; thus

da.

dF dF dz da da dz

dx dz dx _ dx dz dx

dF dF dz ~~da da dz_'

dy dz dy dy dz dy
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This result involves only the same arbitrary functions as

the original equation, namely,

&(«)> 4>M <Ma);

it also involves -3- and -3-
; we may denote it by

F
\
x

> y'
z

' Tx' Jy' *«^* *a(a)) ^n ^ = 0.

Differentiate this equation with respect to x and y as

before ; thus we obtain another result which involves only

the same arbitrary functions as the original equation. By
continuing the process until we introduce the differential

coefficients of z of the /1
th order, we find that we have on the

whole n + 1 equations, from which the n arbitrary functions

may be eliminated.

252. Suppose we have two equations of the form

F{x, y, z, a, 0,(a),
<f>2

{a)
<f>n {a)} = 0,

f{x, y, z, a, 4>,(a),
<f>t

{a) <£„(<*)} =0,

where a is an unknown function of x, y, and z, and <p 1
, <j)2 ,...<f>„

denote arbitrary functions ; and let it be required to eliminate

a and the arbitrary functions of a. In this case also we shall

find that it will be sufficient to proceed to the derived equa-

tions of the 71
th order inclusive.

As in the preceding Article we differentiate the first equa-

tion and thus obtain

dF dF dz da dxdz_

dx dz dx dx dz dx

dF dFdz ~da.da.dz
"'*

dy dz dy dy dz dy

But as a is not a known function the right-hand member of

(1) is not a known function. But from the second of the

given equations we obtain in the same manner

da dadz df df dz

dx dz dx dx dz dx

da da dz df dfdz
'

dy dz dy dy dz dy

•(2);
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so that we can replace the right-hand member of (1) by the

right-hand member of (2). Hence, as in the preceding Article,

we obtain a result which we may write

( dz dz )

Fl
f*

y' *' 3£' dy~ '

a
' *1^' <k^' *•(«)] = °"

Differentiate this again and make use of (1) or of (2) ; thus
we obtain another result involving only the same arbitrary

quantities. By continuing the process until we introduce the
differential coefficients of z of the n"1 order, we find that we
have on the whole n + 2 equations from which we may elimi-

nate a and the n arbitrary functions of a.

253. As an example of the preceding, suppose only one

arbitrary function <p(a). The given equations become

f{x,y,z,a, </>(«)} = 0,

F{x, y, z, a, £(«)} = 0.

Differentiate each with respect to x and y. We thus have
six equations, from which we may eliminate

">£> Ty> * (a)
'

and *'W '

leaving one equation between

dz . dz
*** dx'

&nd
dy-

254. The conclusions obtained in Arts. 251, 252 are

due to Dr Salmon ; see his Geometry of Three Dimensions,
Chapter XII. It had been usual to overestimate the num-
ber of derived equations which are necessary in order to

effect the elimination in Art. 252. Suppose, for example, there

are two arbitrary functions so that

F{x, y, z, a, ft (a), ft (a)} =0,

/ [m, y, z, a, ft (a), ft (a)} = ;

then it might appear that by forming the derived equations up
to the second order inclusive, as in Art. 248, we should obtain

T. D. c. T
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twelve equations, but have twelve quantities to eliminate,

namely

da da d*a ePa d*a
a

' die' dj,' "5?" dJdjf' df'

&(«). *.'(«). *,"(«). fcW. */(«), &»•
But the fact is that by adopting the method of Art. 252,

we have <£,' (a) and $2
' (a) occurring in such a way that they

disappear together in our elimination of -3— and -4- . Hence

it happens that we are able to effect the required elimination

without proceeding beyond the derived equations of the second

order.

255. In particular cases the elimination may be effected

without proceeding to so many differentiations as the general

theory indicates. Suppose, for example, that we have three

arbitrary functions, we should generally have to form the de-

rived equations of the third order by Art. 252. But if the

three arbitrary functions are so related, that

the given equations take the form

F{x,y,z, %&(*), </>,»>&" (a) J =0,

/ [x, y, 2, a, <k (a),
<f>t

'
(a), <f>" (a) } = ;

and by proceeding as far as the second derived equations, we
obtain twelve equations and eleven quantities to be eliminated,

namely

dx da. d*a d*a d*i
*' <&r Ty' dtf' dtf' d^dy'

&(«), &», *,», */», *,"»•

Thus we can deduce one resulting equation involving x,

y, z, and partial differential coefficients of 2 up to those of the

second order inclusive.



ELIMINATION OF FUNCTIONS. 275

256. We will give one case in which more than three

variables are involved. Suppose

F[u, x, y, z, 4, (a, j8)} = (1),

in which ^ (a, £) designates an arbitrary function of the two
quantities a and ft, which are themselves both known func-

tions of u, x, y, and z. If we differentiate (1) with respect

to each of the independent variables x, y, z, we obtain three

equations

dF n dF n dF ntx =0> 5§r°>
^=° «'

In these equations, besides the arbitrary function
<f>,

we

have its two derived functions -3- and -^. Hence, between
da. dp

the four equations (1) and (2), we shall be able to eliminate
the three arbitrary functions, and arrive at an equation in-

, . da du , du
volvingu,^,*,

Tx , Ty
, and ^.

EXAMPLES.

1. Eliminate the constant from

xy-c={so+ y) (c-1).

Result (x*+ x+ 1) -^- +y* + y + 1 =0.

2. Eliminate e* and cos x from

y — e* cos x = 0.

Result g- 2 | + 2y = 0.

3. If a?— 2ay — a1 — b = 0, shew that

x
d?y_dy = ^
da? dx

4. If y = ae™ sin nx, shew that

T2
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5. If y = a sin x + b cos x, then

6. Eliminate the exponentials from

xy = ae
x + be~*.

Result. x j3 + 2 Ji- xy =0-

7. Eliminate the constants from

y' +ba?= a.

Result. «yg + *(^)-y^=o.

S. Eliminate the constants and exponentials from

aev + be~»=fe
c
+ge-*!

.

*-* # +®"-£H®H-£(39"
9. If (« + #) (c+ log x) = xe", then

10. Eliminate a and 6 from

y = Tx
cos& logx+h)-

Result. *2S+ 2x^ + 2^ = 0.

11. Eliminate the constants from the equation

1 = aa? + 26a;^ + cy
2
.

Antt. S(y—g)+to@)'-o.

12. If - - I =/(! - -V shew that
a x J

\y xl

,dz „dz ,
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13. If log z = {ay + bx)+yjr (ay — bx), then

°8

{
z£-(l)}= j,

{
a¥s -(|)}-

• 14. If z = e^<f>{x + y), then ^-J =
tic dy x + y

'

15. If z =
<f>

[e
x
sin y), then sin y -=- = cos y -5-

.

d^z/j2y_ ds
s <fe <£z d'z/dz\*_

dx2 \dy) dx dy dx dy dy* \dx)
~

17. If,=/fc^V then

/ \dz , . <fe
(*-w*)S+(y-«)^ = 0.

18. Eliminate the arbitrary functions from

z = x<f> {ax + by) + yyfr {ax + by).

Result. a*^ - 2aJ— + 6°^ = 0.

19. Eliminate the arbitrary and exponential functions from

u = e
mF {x + y) + e""

1
/ (« - y).

t> u d*u , , ~ du
,
d'u

MeSUlt. -y-5 = WW + 2?l -=- + T-5.
dor dy dy

20. Eliminate the circular and logarithmic functions from

(1) y = sin log x, (2) y = log sin x.
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21. If z = ^ + $ (I + logy) , then

dz tdz ,

yry +x -dx
= y-

22. Eliminate the functions from y = xf(z)+<f>{z).

Result. The same as in Example 16.

23. If z + mx+ ny =/{(*- a)' + (y - b)' + (a - c)
8

}, then

{y-b-n(z-c)}^
c
-{x-a-m(z-c)}

d
-=n(x-a)-m{y-b).

24. If ^ = x' {ax + by) + <f>{y' + x') + ^r{y'- x'),

a;
2
da;' y2

eiy
8

x* dx ys dy x y
3 '

25. If z =
<f>

[x +f(y)}, then

d'z dz dz d'z _
dxdy dx dy dx1

26. Eliminate the arbitrary functions from

&«*[* &-* dy')
z+

{
z - x

dx-yTy){xdx-ydyr -

27. If u+y + z = x'f{x (u — y), x(y— z)}, then

du , .du . .du
x
fc

+(V+ z)
dy +

{u + y) dz=y + Z-

28. If u =
i>
{F (f - xz), f(^ -

J*
-

1)J
, then

du ^ du „ du

dy y dz dt
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29. If u = xyz . F{fi (x* + y* + z
l
), fa

(xy + xz +yz)}, then

, .du . , , du , . du
(y
_

2)
_ +(3 _ a;)_ + (a!_ y)

_

(y
— z z — x x — y\1 + + s

).
x y z I

30. Eliminate z from the equations

d3x . . Jaw , .

3P - * (*, y). d?=^(^y).

i2esua
-

2<£ fc 2/) =^ 3^

31. Eliminate the arbitrary functions from

32. Shew how to eliminate the n arbitrary functions from

"*© +*© +a"*-©-
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CHAPTER XVIII.

TANGENT AND NORMAL TO A PLANE CURVE.

257. Definition. Let P, Q, be two points on a curve,

and suppose a straight line drawn through them ; the limit-

ing position of this straight line, as Q moves along the curve
and approaches indefinitely near to P, is called the tangent

to the curve at the point P.

To find the equation to the tangent at a given point of

a curve.

Let x, y, be the co-ordinates of the given point P,

x + Aa;, y + Ay, the co-ordinates of another point Q on the
curve.

Then x, y , being current co-ordinates, we have for the
equation to the straight line PQ,

< .._ y + Ay-y ,_> „>
V ~ V = . » — (# — x),

Ay, , sthat is,

Now let Q approach indefinitely near to P\ the limit of
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Ax ax'

Ay dy-~ is -^ . and the equation to the tangent at P is

258. Definition. The normal to a curve at any point is

a straight line drawn through that point at right angles to

the tangent at that point.

To find the equation to the normal at any point of a curve.

Since the equation to the tangent at the point {x, y) is

the equation to the normal at the same point is

dx

supposing the axes rectangular.

259. Let the tangent and normal at the point P meet the
axis of x at the points T and G respectively ; draw the ordi-

nate PM; then

MT is called the subtangent,

MG is called the subnormal.

MP
Now ~Wt ~ *^e tanSent °f P^x

dx'

therefore MT= JL=y-^.
dx

Also -jjjp = tangent of GPM= tangent of PTx

dx'

therefore MG =y -f-

.
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In these expressions for the subnormal and subtangent,

it is to be observed that the subtangent is measured from M
towards the left, and the subnormal is measured from M
towards the right. If in any curve y -j- is a negative quantity,

it indicates that G lies to the left of M, and, as in that case

doc
y— is also negative, T lies to the right of M.

260. In the equation to the tangent put y = 0, then

, dx

this therefore is the value of OT.

Similarly, if we put x = 0, we find

dy

which gives the ordinate of the point where the tangent

meets the axis of y.

261. The length of the perpendicular from the origin on

the tangent is, by the usual formulae of analytical geometry,

dy
x -£-y

jayVRST
262. If the equation to a curve be given in the form

<t> (x> y) = 0» we have, by Art. 177,

dy _ \dx)

dx (d<)>\

'

[dy)

Thus the equation to the tangent becomes

<»'-4f)
+ <*'-*>©- '

and the equation to the normal becomes

<^>@)-<*'->(D-
'
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The length of the perpendicular on the tangent from the

origin is, neglecting the sign,

v/{©"+(|)T
263. It is sometimes convenient to determine a curve by

the two equations

y=ir(t), x = x{t),

so that x and y are both functions of a variable t, by elimi-

nating which between the given equations, a result of the

usual form y =/ (x) may be obtained. With this supposition,

we have
dy

dy dt

dx dx'

~di

Hence the equation to the tangent becomes

. , .dx , .dy

and the equation to the normal becomes

In the figure we have supposed the axes rectangular;

if they are oblique no change is made either in the inves-

tigation of the equation to the tangent or in the result But
the equation to the normal is

y -y—

—

dy
1 + COS Q) -?-

dx

cos a) ,

ax

where co is the angle of inclination of the axes.

264. Example (1). The general equation to a curve of

the second order is

Ay* + 2Bxy + Cx* + 2Dy + lEx +F= 0.
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Hence, by Art. 262, the equation to the tangent at the
point (x, y) is

iy'-y) (Ay+Bx + B) +(x'-x) (Cx+By + E) = 0,

which reduces by means of the given equation to

y'(Ay + Bx + D)+ x'{Cx+By+E)+By + Ex + F=0.

Example (2). Suppose the equation to the curve to be

x

y=ae°,

therefore -^- = - e° = - •

ax c c
'

and the equation to the tangent becomes

y -y = Z(x -x).

The subtangent MT =%-=c, and is therefore constant in

dx

this curve which is called the logarithmic curve.

Example (3). The equation to the logarithmic spiral is

tan-I

! = HogV(^+ 2f).

Hence
_***_?*, )

af+y x* + y' '

i.1. r dy kx + y
therefore -f- = ^- ;dx x — ky

and the equation to the tangent is

kx + y . , .

y-y =x-^Ty
{x - x) -
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Example (4). Suppose that the equation <]> (x, y) = 0, or

u = 0, can be put in the form

Vn + vH_l
+ vn_Jl+ +v

1
+ v =0,

where vn , v„_lt
are homogeneous functions of the degree

n, n— 1, respectively; hence

du diL . do„_,
._ = ^_? 4.

:

,

dx dx dx

du = dva dv„_
t

dy dy dy
'

and the equation to the tangent is

But by the property of homogeneous functions (see

Example 3 at the end of Chapter VIII.)

dv. dv,.^ + X
dx

=nV"

dv._, dv._, , „

.

Hence the equation to the tangent becomes

<<&+% + )+*'(&+%' + )

= nv, + (n - 1) jv.x + (n - 2) vn_i+ ,

or, since vu + v^l
+vn î

...+v
l
+ v

o
= 0,

* \dy dy '
""/ \dx dx ' '")

+ Vi + 2«--, + ... + («- 1 ) v, + n« = 0.
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Example (5). Determine a point in a given curve so that

the area of the triangle formed by the tangent at that point

and the co-ordinate axes may be a maximum or a minimum.

By Art. 260, the area varies as the product of
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265. If the equation to a curve be given in the form

F(x,y)-c=0,

the equation to the tangent at the point (x, y), will be

V-*)f+<*-«> E-o CD;

and the equation to the normal

(y-y)f-(*'-*)f
= o (2).

If we consider x, y, as constant, equation (1) combined
with F(x,y) = c, will give the co-ordinates of the points

where the tangents drawn from the point (x\ y') meet the
curve represented by F (x, y) = c ; and equation (2) combined
with F (x, y) = c will give the co-ordinates of the points

where the normals drawn from the point (x, y) meet the

curve represented by F (x, y) = c.

Since the equations (1) and (2) are independent of c, they
will represent the geometrical loci of the points where the
curves which we obtain by ascribing different values to c in

the equation F(x, y) = c, are met by their tangents or their

normals respectively, which pass through the point {x, y).
Thus, if we want to draw tangents from the point {x, y) to

any one of the curves F (x, y) = c, we must construct the
curve

and determine where it intersects the particular curve

F(x, y) = c which we are considering
;

join the point or

points of intersection with the point {x, y) and we have
the required tangent or tangents. Similarly, we may draw
normals from (x, y) to any one of the curves F (x, y) = c.

EXAMPLES.

1. In the curve y (x — 1) (x — 2) = x — 3, shew that the tan-

gent is parallel to the axis of x at the points for which

x = 3 + V2.
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2. In the curve y
3 = (x — a)

2
(x— c), shew that the tangent

is parallel to the axis of x at the point for which
2c + a .

3. In the curve x2
y*= a* (a; + y), the tangent at the origin is

inclined at an angle of 135" to the axis of x.

4. In the curve x2
(x + y) = a2 (x—y), the equation to the

tangent at the origin is y = x.

5. In the curve a$ + y$ = cfi find the length of the perpen-

dicular from the origin on the tangent at (x, y) ; also

find the length of that part of the tangent which is

intercepted between the two axes.

Results. (1) U(ttxy) ; (2) a.

6. If a;,, yt , be the parts of the axes of x and y intercepted

by the tangent at the point (x, y) to the curve

7. Shew that all the curves represented by the equation

©»""
different values being assigned to n, touch each other

at the point (a, b).

8. In the curve y" = a""
1
*, express the equation to the

tangent in its simplest form ; and determine the value

of n when the area included between the tangent and
the co-ordinate axes is constant.

9. If the normal to the curve a£ + y* = at, make an angle
<f>

with the axis of x, shew that its equation is

y cos
<f>
— x sin

<f>
= a cos

2<f>.
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] 0. Find at what angle the curve y* = 2ax cuts the curve

x3 - 3axy + y*=0.

Results. The curves meet at the origin ; here the
. first curve has the axis of y for its tangent, and the

second curve has both the axes for tangents. The
curves also meet at the point x= a lj2, y = al/i; and
here they meet at an angle whose cotangent is £/4.

11. Tangents are drawn to the ellipse —
2 + ^ = 1, and the

circle a? + y
3 — a' = 0, at the points where a common

ordinate cuts them : shew that if <£ be the greatest
inclination of these tangents

, , a-b
tan<

*
,=
27pr

12. If tangents be drawn from a point (h, k) to the curve

whose equation is f-J + r|j = 1, an ellipse whose

semiaxes are a t -A , and & (t) will pass through the

points of contact.

13. Shew that all the points of the curve y* = 4a
(
x + a sin -

)

at which the tangent is parallel to the axis of x lie on
a certain parabola.

14. The normal to a parabola at any point P is produced
to meet the directrix at Q, and the tangent at P meets
the directrix at R : find (1) when QE is a minimum,
(2) when the triangle PQR is a minimum.

a /„n a
Results. (1) x = -

, (2) x = -
; where y* = 4aa: i

3

the equation to the parabola.

is

T. D. C.
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CHAPTER XIX.

ASYMPTOTES.

266. Suppose one or more of the branches of a curve to

extend to an infinite distance from the origin, and that at

successive points of such a branch we draw tangents. Then
two different cases may exist with respect to the directions of

these tangents ; they either, as we pass from point to point

along the curve, approach some definite limit or they do not.

And with respect to the position of these tangents, two cases

are possible ; the intercepts cut from the axes of co-ordinates

either tend to a finite limit or they do not. If the' direction

has a limit, and one or both of the intercepts a limit, there

exists a straight line towards which the successive tangents

continually approach. Such a straight line is called an
asymptote to the curve ; hence we have the definition which
follows.

267. Definition. An asymptote to a curve is the limit-

ing position of the tangent when the point of contact moves
to an infinite distance from the origin.

To find whether a proposed curve has an asymptote, we

must first ascertain if -y- has a limiting value as we proceed

to an infinite distance from the origin. If it has not there is

generally no asymptote. If -^ has a limiting value, we must

then ascertain if the intercept on the axis of x, which by

Art. 260 is x — y-j-, has a limiting value. Suppose it has,

and let it be denoted by c while
fj,

denotes the limit of -jr ,

_:-- then y = fj,(x — c) is the equation to an asymptote.
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268. If -j^ increases without limit, and at the same time
ax

dsc
x—y-j- has a finite limit, we have an asymptote parallel to

the, axis of y.

Also we may have an asymptote when the limit of

x — y-j~ is infinite, namely in the case where the limit of

-j" is zero, and the limit of y — x-^, which is the intercept

on the axis of y, is finite. The asymptote is then parallel to

the axis of x.

269. We will now take some simple examples.

(1) The equation to the parabola is y'=4ax; so that

we have y = + 2 Vox; therefore -^ = + a/- ; hence, when

x increases indefinitely the limit of j- is zero; bat

y — x-~^=±(2 Vax — "Jax) = + Vox, which has no finite limit.

Therefore there is no asymptote.

b*
(2) The equation to the hyperbola is y

l = -j(xs— a') ; so
a

that we have y = + - J(x*—aa

) ; therefore -£- = +—77-5 sr

,

* ~ a ax ~ a */(x — a
)

and x — y -r- = x = — . Hence the limit of -^ when
ay x x dx

x is infinite is + - . and the limit of x — y -r- is 0. There-

fore y = - x is the equation to one asymptote ; and y = x

is the equation to another asymptote.

(3) Suppose y= -—7^ +c to be the equation to a curve, then
(x—0)

, oV 2as
. rfx x — b c(x — b)

3

we have £- = --, jrs, and x-y-j- =xH—— + v
^ ,-^-

.

dx (x - 0) * ay 2 2a3

U2
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As x approaches b, y and — increase without limit. The

limit of x—y-r is b, and, by Art. 268, there is an asymp-

tote parallel to the axis of y, having for its equation x=b.

270. An asymptote may also be defined as a straight line,

the distance of which from a point in a curve diminishes with-

out limit as the point in the curve moves to an infinite distance

from the origin.

Suppose y = /ix + /3

the equation to a straight line, and

y = /ix + /3 + v

the equation to a curve, then if v diminish without limit as

x and y increase without limit, the straight line will be an
asymptote to the curve. For if x, y, be the co-ordinates of

a point in the curve, the perpendicular distance of that point

from the straight line is

y — fix — /3 v

and this diminishes without limit when x and y increase

without limit.

271. That the two definitions of an asymptote lead in

general to the same results may be seen by considering differ-

ent examples, or by the following proof. Let y = fix + /3 + v

be the equation to a curve, where fi and /3 are constants, and
v diminishes without limit as x and y increase without limit.

From the given equation

X X

Hence fi is the limit of - when x and y increase without
SO

limit. But, by Art. 148,

dy

the limit of - = the limit of — or -^

.

x 1 ax
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Also y3 is the limit of y — fix ; but fi = the limit of ,- ;

therefore in general ft = the limit of y — ->- x. Hence the

equation to the tangent to the curve at the point (x, y),

which is

y-y =
ix

{x - x)
>

becomes, when x and y are indefinitely increased,

y = /j.x + P ;

that is, the equation to the asymptote found according to the

first definition is the same as the equation found according to

the second definition.

272. We say in the last Article that in general the limit

of y — fix = the limit of y — Jf- x. Suppose, for example, that

the equation to a curve is

y=Ax + B+-;J x

therefore
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a + sin x
Also y — fix = B+-

x

K j dy . cos x a + sin xAnd i = ^ + ^ ?—

-

therefore w — 1 -x= B— cos aH

—

^-^

.

ax a:

Here we cannot assert that y — fix and y — -^-x have the

same limit : the limit of the former is B, but the latter cannot
be said to have a limit, on account of the term cos x, which
does not tend to any limit as x increases indefinitely. In
this case the curve

y = Ax + B-\

has an asymptote according to the definition of Art. 270,

namely, y = Ax + B, but not according to the definition of

Art. 267.

The demonstration in Art. 270 might, of course, start

with the equation x — fiy + /3 + v ; so that, should the asymp-
tote be parallel to the axis of y, by taking the second form
we avoid having fi infinite.

273. We have hitherto confined ourselves to rectilinear

asymptotes ; we now extend the definition to curvilinear

asymptotes.

Definition. When the difference of the ordinates of two
curves corresponding to a common abscissa diminishes without
limit, or the difference of the abscissae corresponding to a

common ordinate diminishes without limit, as we pass from
point to point along either curve, each curve is said to be an
asymptote to the other.

Hence, if the equation to a curve can be put in the form
T>

J> J}

y = A x" + A
1
x"-

1 + ...+A^
1
x + A„ +^+ x?

+
x
?+->

then y = Ajv" + Ap"'1 + ...+A^x + AK
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is the equation to a curve which is an asymptote to the
former. So also is

y =A xn + A.X"-1 + . . . + A^x + An + -*

,

and y = A xn + A
1
x'-

l +...+An_1x + An + -± + -^,

and so on

Example. Find asymptotes to the curve

a? - xy* + ay* = 0.

Here y2=—3- ; therefore y = + a /(—

—

As x approaches the value a, both y and -¥- increase

without limit, and x = a is the equation to a rectilinear

asymptote.

Putting y in the form + x ( 1
J

,
and expanding by

the Binomial Theorem, we have

y=±x a 3a* 5as
]

1 +
2x
+

8x>
+

T6x»
+ --\ ?)

Hence y= + (# + -J
are the equations to two rectilinear

asymptotes. We may obtain as many curvilinear asymptotes
as we please by making use of the series in (1). For example,

are the equations to two asymptotic curves of the second
order. The student will remember that by Art. 114 we
may use the Binomial Theorem in the above Example as a

true arithmetical expansion when - is less than unity, which

will certainly be the case when x is increased indefinitely.
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274. The following method will "furnish the rectilinear

asymptotes with great readiness in many cases. Suppose
the equation to a curve, F(x, y) = 0, to be such that F(x, y)
is the sum of different homogeneous functions of x and y, so

that the equation may be put in the form

**® +^g)+*xg) + ...=o (1),

where n, p, q, are arranged in descending order of magnitude.
For example, every rational integral algebraical equation
between x and y can be put in this form. From (1) we have

©+>©+£*©+— »
Now in finding an asymptote we must first by Art. 271

v
ascertain the limit of - when x and y are infinite. If we

CO

call that limit /t, and suppose it to be finite, we have from (2)

Let /i, be a value of p obtained from this equation ; we
have next to find the limit of y — fi

t
x. Put y — fi

t
x = j3,

then from (2)

' *(* + f) +^+ (ft + §) +
--° (3) "

But, by Art. 92,

• (*+!)-w+M*+*)
-*'(*?)

since
<f> (jjJ = 0.

Thus (3) becomes
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In equation (4) let x be supposed to increase indefinitely,

then we shall have different results depending on the value

of p.

If p be greater than n — 1 the value of yS is infinite, and

there is no asymptote for the root /*, of the equation

*(/.) = a

If p be equal to n — 1 and
<f>

(jij be not zero, the limit of

/3 is — T,, . 5 and tne equation to an asymptote is

9 V*i)

If p be fess than n — 1 and <j> (fit)
be not zero, the limit of

/3 is and the equation to an asymptote is

In the last case the equations

y=fix, <j>(/i)=0,

give for determining the asymptotes

*(|) = 0, or^(|) = 0;

hence when the equation to a curve can be exhibited in such

a form that the sum of a number of homogeneous functions is

zero, and the degree n of the highest of these functions ex-

ceeds by more than unity the degree of any of the others,

all the asymptotes in general pass through the origin and
may be found by equating to zero the homogeneous function

of the 71
th degree. We say in general because there is the

limitation that
<f>' (/*,) is not to be zero ; that is, by the theory

of equations <j> {(i) = must not have equal roots.

275. We will now consider the case in which <£'(/*,) is

zero.

First suppose p equal to n — 1.

If >fr (pt
) is not zero /3 becomes infinite, and there is no

asymptote for the root /*, of the equation p (ji) = 0. But if

tfr (^tj = the value of /9 becomes indeterminate.
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Suppose in this case q = n — 2, so that equation (3) of

Art. 274 gives

^IhW^-H^h">
Since

<f>
(/a,) = and $' (/a,) = 0, we have, by Art. 92,

Substitute these values in the equation above, multiply by
a?, and then proceed to the limit, and we have for determining

the limiting values of /3, the quadratic equation

If the values of /3 be possible, we thus obtain two parallel

asymptotes.

If this quadratic assume an indeterminate form, we may
proceed in the same manner to form a cubic equation in /9.

In the case where <$>' (//.,) is zero and i/r (/a
x)

is not zero,

there is no rectilinear asymptote for the root /a, of the equation

4> (/a) = 0, as we have already stated at the beginning of this

Article. In this case we may in general obtain a parabolic

asymptote, as we will now shew.

By Art. 92, since
<f> (fij

= 0, and t£' (/a,) = 0,

(*+s-;s*v?)-
Hence equation (3) of Art. 274 becomes

as x increases indefinitely this equation approaches to the

form -r» = ,,Y,\ , so that — =
\ \„ .

".

2x* ^ 0*,) x I «</> (/*,)
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Hence wo have a parabolic asymptote determined by the

equation

y-/*i* :

that is, (y - /^a:)
8 ^^

Next suppose p less than w — 1.

Then since
<f>' (fi

t
) = equation (4) of Art. 274 will not de-

termine /9 ; and instead of this equation we have ultimately

in the manner just shewn

1/8* _ Vrfc.)

If n —p = 2, we obtain

so that if *fr(ji
1) and </>"(/*,) are of different signs we have two

possible values of /3, and therefore two parallel asymptotes
which are equidistant from the origin.

If n — p is not equal to 2, we have a curvilinear asymp-
tote determined by the equation

276. We have assumed in Article 274, that the limit of

- is finite; if it be not, the limit of - will be zero, and we
x

. y
must examine if there exists an asymptote parallel to the

axis of y. This can generally be easily ascertained in any
particular example. Or we may put the given equation iD

the form

and proceed as above.

277. If a curve be given by an algebraical equation we
may determine the asymptotes which are parallel to the
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axis of y thus. Arrange the equation according to powers

of y ; suppose it to be

y'f(x) +fV, (*) + p-eft (*) + • • • = 0,

where a, /?, ... are all positive, then the asymptotes parallel to

the axis of y will be given by the real roots of the equation

y»=o.

For the equation to the curve may be written

and it is obvious that this is satisfied by supposing y = oo and
f(x) =0 ; and that when y is oo no other value of a; except
those derived from f(x) = will satisfy it. Hence the asymp-
totes parallel to the axis of y are found by equating to zero the

coefficient of the highest power ofy in the equation to the curve.

Similarly the asymptotes parallel to the axis of x may be
found by equating to zero the coefficient of the highest power
of <r in the equation to the curve.

When a curve is given by a rational integral algebraical

equation, it will be convenient to determine by the preceding

method the asymptotes parallel to the axes, and then proceed

for the other asymptotes according to the following rule ; we
suppose the equation of the wth degree. Substitute for y in

the given equation fjuc + /3 and arrange the terms of the equa-

tion according to powers of x. Equate to zero the coefficient

of x" ; this will give an equation for determining p ; suppose

/i, one of the real values of /m. Then examine the coefficient of

as*
-1

, and give to yu. if it occurs in this coefficient the value /a, .

If we can determine /3 so as to make this coefficient vanish,

then y= fi
t
x + fi will be the equation to an asymptote ; if the

coefficient canDot be made to vanish there is no corresponding

asymptote. If the coefficient vanishes whatever be the value

of /3, then put the coefficient of xn~' equal to zero substituting

/i
t
for fi. in it ; we shall thus have generally a quadratic equa-

tion to determine the values of /3, and if these values are real,

we obtain two parallel asymptotes. If the coefficient of a;"
-*

vanishes, whatever be the value of 0, we must equate to zero

the coefficient of x"~* and so on.
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This rule can be easily shewn to agree with Arts. 274
and 275. Equation (1) of Art. 274, may be supposed the

equation to the curve in which n is an integer, p = n— 1,

q=n — 2, Then if we put (ix+(3 for y, and arrange

the terms according to powers of x, we shall obtain the ex-

pression

*>(,*) +X--WM +/3*»}+*-2

{x(/*)+0f 0*)+f f ' 0*)}+. .

.

Thus by equating to zero the coefficient of x" we arrive at

the equation for determining fi given in Art. 274. Then by
equating to zero the coefficient of x"'

1 we shall obtain the
same value of /3 as that found in Art. 274 ; or if the coeffi-

cient of x"'
1
vanishes, whatever (3 may be, then by equating

to zero the coefficient of x"~* we arrive at the quadratic equa-
tion given in Art. 275.

Example ( 1 ) . y
s + xs — 3axy = 0.

Put (ix + (3 for y, then

(fix + /3)
a + xa- 3cub (fix + (3) = 0;

therefore (ji
3 + 1) Xs + 3#2 (/x

2
/3 - a/j,) +Mx + N= 0.

Hence, /a
3 + 1 = 0,

(i~(3 — ap = 0,

are the equations from which (i and (3 are to be found ; they
give (i = — 1, (3 = — a; therefore

y =— x—

a

is the equation to an asymptote.

Example (2). a? (x + y) = a2
(x — y).

Put /*# + /3 for y, then

x*(x + fix + (3) = a2
(x — fix— /3)

;

therefore a;
8
(1 + /*) + /3a:

2 - a;a
2
(1 - /*) + a2

/3= 0.

Hence, 1 + fi = and /3 = ;

therefore y = — x is the equation to an asymptote.
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Example (3). xy {y — x) (y — x + 3a) + 4a3x — a4 = 0.

Here the term containing the highest power of y is xy*',

thus x = gives one asymptote, namely the axis of y. Simi-

larly, the term containing the highest power of x is yx3

;

therefore y = gives one asymptote, namely the axis of x.

Then put fix + for y, and we obtain the expression

x{fix + {3) {(jj,- l)x + /3}{{fi- 1} x + 3a + /3} + 4a
3
a; - a4

.

Arranging this according to powers of x, we have

x*fj.(ji-iy + a?{fi-l) {3/xa+(3/x-l)/3}

+ Xs
{& {3fi - 2) + 3a£ (2/i. - 1)} + . .

.

Put /t (fi — l)
8 = ; we have then /j, = 0, or /u. = 1 ; the

former value of fi will lead to the asymptote coinciding with

the axis of x which we have already found. The value /j. = 1

makes the coefficient of xs
in the above expression vanish

;

we therefore equate to zero the coefficient of x2

,
putting /* = 1

in it. We thus obtain /3*+ 3a/3 = ; hence, /3 = 0, or /3 = - 3a.

Therefore we have for the equations to asymptotes y = x, and

y = x — 3a.

It will be observed that the conclusions of this Chapter all

hold whether the axes be rectangular or oblique.

EXAMPLES.

Find the asymptotes of the following curves

:

1. y (x — 2a) = x" - a3
. Result. x = 2a; y = + (x + «).

2a
2. y* = x" (2a - x). Result. y=—x+— .

3. y{ai + x*) = at (a-x). Result. y = 0.

4. y
i
(ay + bx)=aY+bix\ Result. y = --x + 2a.

5. y=(x-a)! (x-c). Result. y = x-%(2a + c).

6. xtf + yx' = a*. Result. x = 0; y=0; y = -x.

7. xy = a2
(x

! - if). Result. y=±a.
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8. ±x2 =(a + 3x)(xt + if).

Result. y = +(^- 3
i|)and*= -|.

9. {x+ a)if=(y + b)a>.

Result. x + a=Q, y + 6 = 0, y=x+b— a,

10. (y - 2x) (if - x2
)
- a (y - x)

2 + 4a2
(x + y) = a3

.

Result. y = x, y+x=— ,
y-2x = -.

11. y
2 (x-y) 2+ax2 (x-y)-3alif-a, = 0.

Result, y = x + ? (1 + V13).
J*

12. x(x2 -a2)-2y(if-a2
) = 3xy2 + a3

.

Result. 2y = x, y + x — a = 0, y + x + a = 0.

13. x2
(x - yf - a2

(x
2 + y

2

) = 0.

Result. x = ±a, y = x±a ^2.

14. (i/-x)2
(x

2 -a2
) = at

.

15. if — 3y
2x + ix" + ay2+ axy — Sax2 + 2b

2x— h'y + c" = 0.

16. If a curve of the third degree be referred to two asymp-
totes as axes, shew that its equation will be of the fomi

xy (ax + by + c) + a'x + b'y + c = 0,

and that the equation to the third asymptote will be

ax + by + c = 0.
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CHAPTER XX.

TANGENTS AND ASYMPTOTES OF CURVES REFERRED TO

POLAR CO-ORDINATES.

278. If we have the equation to a curve expressed in

terms of x and y, we may transform it to one between polar

co-ordinates by assuming x = r cos 8 and y = r sin 8. Thus
r becomes a function of 8, and the equation to a curve in polar

co-ordinates takes the form r =f{8), or F (r, 8) = 0. In this

case the curve is called a polar curve or spiral ; r is called the

radius vector and 8 the vectorial angle.

The angle (yfr) which the tangent to a curve makes with the

axis of x is given by tbe equation

tani/r = ^, (Art. 257).

Hence, by Art. 201,

df
sin^ j^ + rcos^

,
do

UQ += dr
"~-

cos#-j£— rsin#
do

279. Expression for the angle included between the radius

vector at any point of a curve, and the tangent to the curve at

that point.

Let P be a point in a curve, the polar co-ordinates of which

are r and 8, S being the pole.



POLAR FORMULAE. 305

Let Q be another point, the co-ordinates of which are

r+Ar, and 6 + Ad.

Draw PL perpendicular to SQ, then

PL = r sin Ad,

LQ = r + Ar — r cos Ad
;

r sin Ad
therefore tan LQP= v t-2 •* r + Ar — r cos A0

Let Q move along the curve to P; the limiting position

of QP is by definition the tangent to the curve at P; let this

be PT. The limit of the angle LQP will be the angle SPT;
call this angle <j>, then

j ^i. v -... c rsinA0
tan <f> = the limit of t 7-3

t" r ^. Ar — r cos At^

when Ad and Ar are indefinitely diminished.

rsinA0

- T r sin Ad
Now

r + Ar — r cos Ad
Ad
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280. The result of the last Article may also he obtained
thus

:

• ndr n
sin jn + r cos

tan PTx = 22
, (Art. 278),

cosfl-TT; — r sin
do

PSx = ; therefore

sin -jq + r cos

,
— tan

a dr acos " -ja— r sin a ,„

tan SPT= =r
d~^°y

reduction,

tan ( sin j„ + r cos
)

1 +
cos ,y, — r sm

281. To find the polar equation to the tangent to a curve.

Let SP= r, PSx = 0, be the polar co-ordinates of the point

of contact.

Let SQ = r', QSx = 0', be the polar co-ordinates of a point

Q in the tangent line. From the triangle 8PQ, we have,

putting SPQ = <j>,

r _ sin 8QP _ sin (0-0'+<f>)
r'
~ sin fiPQ

—
sin £

= sin [0 - ff) cot $ + cos (0 - 8).

But tan <b = r -j-\
T ar

therefore
J
= ^sin (0-0') +cos (0- 0") (1).
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This result may be written,

r'^rsm(9-ff) = r
i

(2).

If we put - = u, and — = u, thenr r r

1 dr _du
~?dB~dd'

Hence, dividing both sides of (1) by r, we obtain

u = u cos (9 - ff) -^ sin (6 - ff),

or u'=ucos(ff-9)+
d
^sm(&-8).

282. To find the polar equation to the normal, at any point

of a curve.

Let SP=r, PSx = 0,

SN=r, NSx = ff,

N being any point in the normal ; then

SP sin SNP Bi*(g'-' + f-»
SN sin SPN

sinin (!"-*)

therefore - = sin (ff — 9) tan
<f>
+ cos (ff — 9)

= sm(ff-9)
rA? + cos(9'-9).

This may be written

•Ar
dd

and may be transformed into

r
'

Tercos{O-ff )
= r JL0>

u = u cos (ff - 9) - u'^-sin (0'- 6).

X2
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283. The polar equations in Arts. 281 and 282, may also

be derived from the rectangular equations to the tangent
and normal of Arts. 257 and 258, by transforming these to

polar co-ordinates, using the value of -^- given in Art. 278.

284. From S draw 8Y perpendicular to the tangent PT;
then

qv OD71 r tan SPT
S Y= r sin SPT=

V(l+ tan2 &P?y
Hence, if SY=p, we have

1
l
+

l
oo* APT. i

+
l (*V

p r r' r r \ddj

fdu\= m!+
(J)

iiu== l
285. From S draw ST at right angles to the radius vector

SP, then ST is called the polar subtangent ; its value is

rta,nSPT, that is r
2 ^.
dr

286. Since an asymptote is a tangent which remains at

a finite distance from the origin when the point of contact

moves off to an infinite distance, if a polar curve has an
asymptote, SP or r must be infinite while ST remains finite.

Hence to determine the asymptotes to a polar curve, we must
first find those values of 0, if any, which make r infinite.
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Suppose a such a value of 8 ; if for this value of 8 the polar

subtangent r8
-y- is infinite, there is no corresponding asymp-

tote. If r
a
-=- be _/?ra'fe there is an asymptote which may be

constructed thus : conceive a straight line drawn from 8 at

an angle a to the initial line ; draw from S a second straight

line at right angles to the first, to the right of it, if r* -r be

dff
positive, and to the left of it, if r

s
-j- be negative, and equal
dr

in length to r"j; through the end of this second straight

line draw a straight line parallel to the first, and it will be

the required asymptote.

The terms right and left in the above rule are to be under-
stood with respect to the straight line first drawn, the eye
being supposed to look along that line from S. The reason

of the rule must be collected from the figure of Art. 284 and
the general principle of the interpretation of signs ; that

figure makes r increase with 8, and therefore r
2
-j- is positive.

If we draw a figure in which r diminishes when 8 increases,

dr
so that -j5 and the polar subtangent are negative, we shall

find that ST falls to the left of SR

287. Example. r =^—-. .r sm0

Here r is infinite when 8 is any multiple of tt.

dr _a (sin 8 — 8 cos 8)
Als0

Td surV? '

therefore r
2 —
dr sm8—6cos,6'

Hence, when sin 8 = 0, the value of the polar subtangent
a8

is „.
cos 8

When 8 = ir, the polar subtangent = air.
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When 6 = 2ir, the polar eubtangent = — 2 air,

and generally when 0=rnr, the polar subtangent = (— l)"~
1
na7r.

To draw the first asymptote, for which 6 = it, the eye must
be supposed to look from S along the direction opposite to

Sx, and then measure from 8 at right angles to Sx and
towards the right, a straight line in length air; a straight

line drawn parallel to the initial line and at a distance am
from it is the required asymptote.

To draw the second asymptote, for which 6 = 2tt, the eye

must be supposed to look along Sx, and then measure to the

left (since the subtangent is negative) a length 2cnr. Hence
the asymptote is parallel to the initial line at a distance 2ott

from it, and above the initial line.

Proceeding in this way we find an infinite number of

asymptotes parallel and equidistant, and all above Sx.

If we ascribe to 8 negative values, we shall in like manner
obtain a series of asymptotes all parallel to Sx, and equi-

distant, lying below Sx.

EXAMPLES.

1. In the curve r = a sin 6, shew that <£ = 6.

2. Determine the points in the curve r = a (l+cos#) at

which the tangent is parallel to the initial line.

3. Shew that in the curve rd = a the polar subtangent is

of constant length.

4. In the curve r (ae° + be~°) = ab, the length of the polar

subtangent is -^—=—
t

.

5. In any conic section, the focus being the pole, the locus

of the extremities of the polar subtangente is a straight

line at right angles to the axis major.

6. Find the angle between the radius vector and tangent
at any point of an ellipse, (1) the focus being the pole,

(2) the centre being the pole. Determine in each case

when the angle is a maximum.
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a a
7. If r = o (1 - cos 0), then

<f>
= -

, p = 2a sin' r , and the

8 8
polar subtangent = 2a sin* - tan -

.

S. If r* cos 29 = a*, shew that sin ^ = -|

.

9. If r3 = o* cos 20, shew that <£ =f + 2d-

a

10. If r = a sec' - shew that the locus of Y is a parabola-

See the figure in Art 284.

11. If r = a (1 + cos 8), shew that the locus of Y is deter-

mined by r = 2a I cos -
J

.

12. If r* = a* cos 20, shew that the locus of Y is determined

by r* = a* (cos— J.

13. Shew that the curve r cos 9 = a cos 20 has an asymptote

having for its equation r cos 8 = — a.

14 Shew that the curve (r — a) sin 8 = 5 has an asymptote

having for its equation rmn.8 = b.

15. Determine the asymptotes of the curve r cos 20 = a.

16. Determine the asymptotes of the curve

r sin 40 = a sin 30.
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CHAPTER XXI.

CONCAVITY AND CONVEXITY.

288. The terms ' concave' and ' convex' are commonly not

defined in works on the Differential Calculus, but are used
in their ordinary sense. The following definition however
has been given :

"A curve is said to be concave at one of its

points with respect to a given straight line, when in passing

from that point its two branches are initially included within

the acute angle formed by the given straight line and the
tangent to the curve at that point. When, on the contrary,

the two branches are initially outside this angle, the curve is

said to be convex at this point with respect to the straight

289. To find a test of the convexity or concavity of a
curve.

Let P be a point in a curve whose co-ordinates are x, y.

ja

Draw the tangent at P ; then if at the point P the curve be
convex to the axis of x, the ordinates of the curve cor-

responding to the abscissae x±h must be greater than the
corresponding ordinates of the tangent at P, when h has any
value contained between some finite limit and zero : if the
curve be concave, the ordinates of the curve must be less than
the ordinates of the tangent. This may be deduced from the
definition of Art. 288 ; or if we omit that definition it must
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still be taken as a consequence of the meaning of the terms

concave and convex.

Let y1 denote the ordinate of the curve corresponding

to the abscissa x+ h, and yi
the corresponding ordinate to

the tangent at P. If y = </> [x) be the equation to the curve,

we have

ya=* (*)+**'(*) +£*> + **)

And since the equation to the tangent at P is

we have

yi
=<p(x) + h<f>'(x);

therefore yx
— y2

= — (£" (a; + 6h)

.

This, if we take h small enough, will have the same sign

astf>"(x); and therefore the curve is convex to the axis of

x if (j>"(x) be positive, and concave if <£>" (x) be negative.

We have supposed in the figures that the curve is above the
axis of x. If it be below the axis of x, then — yt

and — y2
are

the numerical values of the ordinates, and the curve is convex
if

—

yt
+ yt

be positive, that is, if <f>"(x) be negative, and con-

cave if <j>"(x) be positive.

Both cases may be included in one enunciation, thus, "A

curve is convex or concave to the axis of x according as y -j
t̂

is positive or negative."

290. Definition. A point of inflexion is a point at

which a curve cuts its tangent at that point.

To find the conditions for the existence of a point of
inflexion. Let y = <f>

(x) be the equation to a curve ; let

x, y, be the co-ordinates of a point in a curve, and x + h, yv
the co-ordinates of an adjacent point. Let the tangent of

the curve at the point (x, y) be drawn, and let y3
be the



314 POINTS OF INFLEXION.

ordinate of this tangent corresponding to the abscissa x -f h.

Then

y1
= <f,(x) + h^(x) + ^"(x + eh),

y3
= <}> (x) + h<f>' {x)

;

Z2

therefore yx
— y%

= — </>" (x + 0h).

Hence, if
<f>"

(x) be not zero, the sign of yl
— yt will, if

h be small enough, be the same as that of <f>"(x), whether
h be positive or negative, and the curve cannot cut its

tangent. Therefore if there be a point of inflexion, we must
have <}>" (x) = 0. Suppose this condition satisfied, then

and this expression changes its sign when h does, provided

4>" (x) be not zero. If <f>'"(x) be zero, it may be shewn that

<f>""(x) must also vanish ; and generally if for a certain value

of x several of the successive differential coefficients of y
vanish, beginning with the second, there is a point of in-

flexion if the first differential coefficient that does not vanish

is of an odd order.

Since generally at a point of inflexion -j4 vanishes while

yj, is finite, -73 changes its sign. For -~
s is the diffe-

rential coefficient of -=^ : therefore, by Art. 89, if -j*. be
da?

J ax'

cPv . . , , .. <Py . dfy
positive j^ increases with x, and 11 -A be negative -3-^

decreases as x increases. Hence -j-^ must pass from negative

to positive if -j^ be positive, and from positive to negative if
CLOG

-5^ be negative.
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291. In the above figure P, Q, R, are points of inflexion

for the curves passing through them. At P there is a change
from concavity to convexity with respect to the axis of x.

At Q there is a point of inflexion, but the curve on both
sides of Q is convex to the axis of x. This agrees with

Art. 289 ; since, if y and -A both change sign, no change

occurs in the sign of their product. At i? we have a point

dv d zv
of inflexion at which -~ is infinite and therefore also -j-*j,

is infinite by Art. 113, a case which the investigation in

Art. 290 does not include. We should therefore in any
d'y

example ascertain if -A can become infinite, and if so we

must examine that case specially. We may trace the curve
in the neighbourhood of that point, or we may examine the

d^v
sign of -j4 for values of x differing slightly from that which

gives rise to the infinite value, and thus determine if the curve

is concave or convex near the point in question.

If we consider y as the independent variable, we may shew
in the manner of the preceding Articles, that a curve is convex

or concave to the axis of y, according as x -r-% is positive or

d?x
negative, and that at a point of inflexion -=-^ must vanish and

change its sign. This is often useful in cases in which -tK

becomes infinite.

292. The connexion between -j^ and the concavity or

convexity of a curve, may also be shewn thus.
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Let PL, QM, RN, be three equidistant ordinates. Draw
the chord PR meeting QM at H.
Let y = <j)(x) be the equation to the
curve ; x, y, the co-ordinates of P;
LM—MN= h. If the curve be con-

cave to the axis of x, QM is greater

than HM; and therefore 2QM
greater than 2HM, that is, greater

than PL+ RN. Hence

<j> (x + 2h) — 2<j> (x + K) +
<f>

(x) is negative,

and therefore also 2i 1
j^

'-—xAJ. is negative.

Let h diminish indefinitely, and it follows by Art. 127,

that </>" (x) is negative. Similarly, if the curve be convex
to the axis of x, then

<f>"
(x) is positive.

293. We will briefly indicate another method by which
the results of this Chapter are sometimes obtained. It is either

deduced from some definition of concavity and convexity, or

given as the definition of those words, that y being supposed

positive, a curve is convex to the axis of x, if -j- be increasing,

that is, if -j4 be positive, and concave if -j- be decreasing, that

is, if -jA be negative.

Also a point of inflexion may be defined as a point where
the curve changes from being concave to being convex, or

vice versa. Hence -r~| must change sign at a point of inflexion.
cux>

A point of inflexion may also be defined as a point at

which the inclination of the tangent to the axis has a maxi-

mum or minimum value. Since when this angle has a maxi-

mum or minimum value, so also has its tangent, we must

have -¥- a maximum or minimum at a point of inflexion.
ax

Hence -r-f must change sign.
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294. A curve referred to polar co-ordinates is said to be
concave or convex to the pole at any point, according as the

curve in the neighbourhood of that point does, or does not, lie

on the same side of the tangent as the pole.

If p be the perpendicular from the pole on the tangent at

a point whose co-ordinates are r, 0, it will be seen from a
figure, that if the curve be concave to the pole, p increases if

r increases, and decreases if r decreases ; hence -J- must be
dr

positive. Similarly if the curve be convex to the pole -£- must

be negative. Thus at a point of inflexion — must change

sign.

295.

erefor

erefor
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3. If y (a*— b*) = x{x — a)* — xb', there is a point of inflexion

2a
when x =— . Is there a point of inflexion when

x = al

y f fa — x\
4. If - = ./ I

J
, there is a point of inflexion when

3ax=— .

4

V X fX — Qi\ ^
5- If - = -j + I

J
, there is a point of inflexion when

x=a.

6. If a;* = log y, there is a point of inflexion when x = 8.

7. If ax* — x'y— a*y= 0, there is a point of inflexion when

x = +—

.

~^3

8. If " = ./ 1-
J

t there is a point of inflexion when

a

x
9. If xy = a' log - , there is a point of inflexion when

a

x = ae*.

10. Find the point of inflexion on the curve,

{y-2l](a'x)Y = ±ax. Result. x ={^\ a.

11. If y (a? + a?) = a* (a — x), there are three points of in-

flexion which lie on a straight line.

12. If r = 7=—- , there is a point of inflexion when r=—

.

W—1' r
2

13. If r= b . ff
1

, there is a point of inflexion when

r = b{-n{n+\)}\

14. If x = a (1 — cos^), and # = a (n<f> + sin<£), there is a

point of inflexion when cos
<f>
= .
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CHAPTER XXII.

SINGULAR POINTS.

296. Under the common title of " Singular Points " are

included all those points on a curve which offer any sin-

gularity depending on the curve itself and independent of

the position of the co-ordinate axes. We proceed to define

the different singular points and to investigate the conditions

of their existence.

Points of Inflexion.

297. These points have been considered in Arts. 288 . . .295
;

the condition for their existence is that -J^ should change

sign.

Multiple Points.

298. Definition. A multiple point is a point through

which two or more branches of a curve pass.

Let <£ (a;, y) = be an equation in a rational form ; by

Art. 177

# +#^ = (1).
dx dy dx "

Now since two or more branches of a curve pass

through a multiple point, it will be possible to draw more

than one tangent to the curve at that point ; hence -& must

admit of more than one value. But since the equation

<j> (x, y) = is supposed rational, -p- and -P- will each have

but one value for the given values of x and y. Hence from
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equation (1) it follows that -j- cannot have more than one

value unless both

^ = 0, and^=0.
ax dy

These then are the conditions for the existence of a mul-
tiple point. If values of x and y can be found which satisfy

these equations and the equation to the curve, then for such
values of x and y we have, by Art. 181,

g +,^ +S(4): (2).
oar dxdy dx dy \dxj x '

From this quadratic equation we can find two values of -^ ,

and thus determine two tangents which can be drawn through
the multiple point. In this case the multiple point is called

a double point.

If the above equation assumes an indeterminate form by

the vanishing of -j-£, j j '> an(^ j?» f°r tne values 0I
"

x and y under consideration, we have, by Art. 184,

<£± J*±_ dy d?4> (dy\\d>4, fdy\*_

dx3+ dx*dydx + dxdy* \dx)
+

dtf \dx) ~ w '

This cubic equation gives three values of -~
; if they are

all real, three tangents to the curve pass through the point

under consideration ; the point is then called a triple point.

If the equation (3) assumes an indeterminate form by the

vanishing of the coefficients of the different powers of -%- , we

must proceed to the fourth derived equation from
<f>

(a;, y) = 0,

and we thus obtain a biquadratic equation for determining -£-

.

299. Ifthe two values of -^ furnished by equation (2) of

Art. 298 are equal, the two branches which pass through the
point in question have a common tangent at that point.

In this case, however, the method by which we have arrived

at equation (2) is not satisfactory, because in obtaining it we
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have assumed -M- to have more than one value. But as in
dx

this case two different branches of the curve pass through
the same point, there will generally be two different values

of ^ ; by Art. 181,

d*<f>
]

„ d*j dy d?+rdyV fy#y
da? dx dy dx dy* \dx) dy dx1

and since ${x, y) is rational, each of the differential coefficients

of
<f>

has only one value ; hence if ^3- be different from zero

j3 can have only one value. But, by supposition -j-^ has
dx" j. daf

more than one value ; therefore ^3- = is the condition that
dy

must hold at the point where two branches touch. Since

-£- = 0, it follows from (1) of Art. 298 that -& also = 0.

d?y
If -~ should have two equal values, then the reasoning

of this Article may be applied to -?4 and the third derived

equation of
<f>

(x, y) = ; and the same result as before may
be deduced.

Points where two or more values of -j- are equal are

called " Points of Osculation."

300. Example. Let f - x' (1 - x') = 0.

Here fy =2y, ?* = -2x(l-x*)+ *a?.

Hence x — 0, y = 0, are the co-ordinates of a point which
may be a double point. Equation (2) of Art. 298 becomes

(!)=»•

therefore -M- = + 1, and there is a double point

We may in this case put the given equation in the form

y = ±xj{l-x>),
T. I). C. T
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and from this we see that for values of x comprised between
and 1, both positive and negative, y is possible, and that

there are two values of y for every value of x. When x =
the two values of y become equal ; but since

we see that when x = there are £mjo values of -^ • Hence,
ax

instead of clearing an equation of radicals so as to bring

it into a rational form, and then applying the method of

Art. 298, we may often detect a multiple point more easily

by observing what values of x make one of the radicals in the

value ofy vanish.

Cusps.

301. Definition. A cusp is a point of a curve at which
two branches meet a common tangent and stop at that point.

If the two branches lie on opposite sides of the common
tangent, the cusp is said to be of the first species ; if on the

same side, the cusp is said to be of the second species.

Since a cusp is really a multiple point, if a cusp exist in

the curve
<f>

(x, y) = at any point, we must have

^ = 0, and^ = 0,
ax ay

at that point. To distinguish a cusp from an ordinary mul-
tiple point, we must trace the curve in the vicinity of the
point in question.

Example. Let (cy - bxf - ^
X ~ a

' = (l).

Here when x = a and y = — we have the equation to the

curve satisfied and also

#-0
-7~ "> and^ = 0.
dx ' dy

Putting the given equation in the form

bx 1 /((x-a)1
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we see that y is impossible so long as a; is less than a, and

that when x is greater than a there are two values of y for

every value of x. When x = a the radical in y vanishes,

and the two values of y become equal ; at the same time

-f-
has only one value, namely - . Hence there is a cusp.

In the figure, A represents the cusp ; the straight line OA

has for its equation y = — ; and

since of the two values of y given

by equation (2), one is greater and
uOC

the other less than — , it is obvious -

c

that the two branches lie on op- ^--^o xT
posite sides of OA, and the cusp
at A is of the first species. Generally the cusp is of the first

species if the two values of -t-j indefinitely near to the point

are of contrary signs, and of the second species if they are of

the same sign.

Cusps of the first species have been called " keratoid cusps,"

and of the second " rhamphoid cusps."

Conjugate Points.

302. Definition. A conjugate point is an isolated point

the co-ordinates of which satisfy the equation to the curve.

For example, let

y*=^{a?-a*).

Here the values x= 0, y = 0, satisfy the equation to the curve,

but no branch of the curve passes through the point thus

determined, y being impossible for all other values of x com-

prised between — a and a. Hence the origin of co-ordinates

is a conjugate point in this curve.

In the above example, since

y = + ? yV ~ «5

),

we find that the value of -p is impossible when x = ; but -^

T2
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may be possible at a conjugate point ; for example, suppose

y - + -, V(a;
2 - «")•

Here, when x = 0, we have -=? = ; but the origin is a eon-
ax

jugate point, since x — 0, y = 0, satisfy the equation, and y
is impossible for all other values of x between — a and a. In

d*y
like manner -— or any number of the differential coefficients

of y may be possible at a conjugate point, but they cannot be
all possible, for if they were we should have nothing to dis-

tinguish the point in question from an ordinary point of the

curve.

To find the condition for the existence of a conjugate point.

Since at a conjugate point the values of the differential

coefficients of y cannot be all possible, let the 71
th

differential

coefficient of y be the first that is impossible. Suppose the

equation to the curve to be put in a rational form, and
denoted by

(f>
(x, y) = 0. Take the ?i

th derived equation ; we
have

d±d?y .£* = n
dydxn+ ^dxn

'

where the terms not written down contain differential coeffi-

cients of (j> with respect to x and y, and also differential

coefficients of y with respect to x of orders inferior to the n01
.

If then -~ be not zero the value of -=-*, furnished by the

above equation will be possible ; hence -^ = is a necessary

condition for the existence of a conjugate point ; but

# +#^ =
dx dy dx '

jt

therefore also -y- = 0.
dx

303. It appears from the preceding Articles that if

<f>
(x, y)=0 be the equation to a curve, we must have at
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an ordinary multiple point, at a cusp, and at a conjugate
point,

d(f>_
0, and -/ = 0.

dx ' dy

Hence, whenever we have found values of x and y which
satisfy these three equations, we must, by examining the
particular curve, and tracing it in the vicinity of the point

in question, determine what species of singular point exists.

We now pass to some other singular points which occur
but rarely, and, as the student will find by experience, never
present themselves in curves the equations to which are of an
algebraical form. See Art. 6.

Points d'arret.

304. A point d'arret is a point at which a single branch
of a curve suddenly stops.

Example. Let y = x log x.

Here when x = we have y = ; but if x be negative, y
becomes impossible. Hence the origin is a point d'arrdt.

_i

Again, suppose y = e
x

.

Here if a; be made indefinitely small and positive, we have y
approaching the limit zero ; but if x be negative and indefi-

nitely small, y is indefinitely great.

Hence the curve has the form represented in the figure, the
origin being & point d'arret; the dotted line is an asymptote
having for its equation y = 1.
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305. A point saillant is a point at which two branches of

a curve meet and stop without having a common tangent.

cc
Example. Let y = 1 ,

1 + e*
i

therefore -^ = j- H j—

.

1 + e^ *(l+ei) 2

Here, if x be positive and approach zero as its limit, we have

ultimately y = and
-jf-
= ; but

if x be negative, we have ultimately

« = and S = \. Hence at the -" dx
origin two branches meet, one

having the axis of x as its tangent,

and the other inclined to the axis

of x at an angle of 45".

Branches Pointillees,

306. If a curve has an infinite number of conjugate points,

that series of points is called a branche pointillee.

For example, suppose y
i = xsiv?x; for all positive values

of x there are two possible values of y, but when x is nega-

tive y is impossible, unless x be a multiple of ir. Hence we
have an infinite number of conjugate points lying on the axis

of x and forming a branche pointilUe.

EXAMPLES.

1. If a'y' = aV — x* there is a multiple point at the origin.

2. In the following curves there is a point of inflexion at

the origin

:

y = sin x
; y = x cos x ; y = tan x

; y = x* tan x.

3. The following curves have cusps at the origin :

* = *•; ty-xy = x*; (y-x*y = x\
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2p±l

4. Tf y=(f> [x) + {x—a) 2? F(x), when x = a, there is a cusp

of the first kind if —-— be greater than 1 and less

than 2, and a cusp of the second kind if -~— be

greater than 2.

5. The curve y* = (x — a)* (x — c) has a cusp of the first

kind at the point x = a.

6. The curve (xy + 1)
2 + {x- l)

s (a;-2) = has a cusp of

the first kind at the point x=l.

7. The curve y — b = (x — a)* + (x — ay has a cusp of the
second kind at the point x = a.

8. The curve xl — 2ax2

y — axy* + a'y* = has a cusp of the
second kind at the origin.

9. The curve x* — ax"y — cury* + a*y* = has a conjugate
point at the origin.

10. The curve x*- lay* - Sa'y' — 2arxi + a'= has a double

point when x = + a, and -^- then = ± Vf ; also a double

point when y = — a, and j- then =±»J$.

11. If ay* ={x — af (x — b), when x — a there is a conjugate
point if a be less than b, a double point if a be greater
than b, and a cusp if a = b.

12. Shew that the curve ay1 — x* + bx* = has a conjugate
point at the origin, and a point of inflexion when

ib

13. Find the points of inflexion in the following curves :

y'(l+x*) = {l-x + xy; r
20=as

; r0sin0 = a .

14. Find the singular points in the following curves

:

ty + x+iy=(l-x)>; y
l -axf + xl =0;

y* = a? - x*
;

y* + xy3 + a? (ay - bx) = 0.
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CHAPTER XXIII.

DIFFERENTIAL COEFFICIENTS OF AN ARC, AN AREA,

A VOLUME, AND A SURFACE.

307. The length of the arc of a curve APQ, reckoned
from any fixed point A to the

point P, is evidently a func-

tion of the abscissa x of the

point P. This function is

often very difficult to deter-

mine, but its differential co-

efficient with respect to x can
always be assigned.

Let P, Q, be two points on a curve

;

x, y, the co-ordinates ofP
x+ Ax, y + Ay, the co-ordinates of Q.

Draw the ordinates PM, QN, and the tangent at P meet-
ing QN at R and Ox at T.

Let AP=s, AQ=s + As.

We assume as an axiom, that the length As is greater than
the chord J?Q, and less than PR 4- RQ.

The chord PQ = </{{Axf + (Ay)*},

PR = MN secPTM= MN>J{\ + tatfPTM)

QR= y+-Ay-RN
= y + Ay - (PM+ Ax tan PTM)
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therefore As lies between V{(Aa;)
2 + (Ay)8

} and

therefore -r- lies between ./jl + (-r^J [ and

V V
+
{dx)\

+
&z~dx''

Now the limit of */|l + (x^J [ , when Aa; is indefinitely

diminished, is

A.g (^5
The limit of— is, by definition, -r- ; hence

£- yaffil <»

Square and multiply b}7 (-=-] , then

' =©'+©' «•

If # and y are each functions of a third variable t, since

(fa; rfy

dx _dt , dy _ rf<

ds ds

'

ds ds
'

~dt dt

"-'-I'l.Q'-liJ*! ">•
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308. Of the axioms on which the preceding demonstra-
tion is founded, the first will probably be readily granted

;

the second is more difficult, and will not be necessarily true

if the arc be not concave towards the chord PQ throughout

its extent. It must be understood therefore, in stating it,

that the arc PQ must be taken so small that it is always

concave towards its chord.

There is another mode of arriving at the results given in

Art 307, which is preferred by some writers: they assert that
no precise idea can be formed of the length of an arc, except
by regarding it as the limit of the perimeter of a polygon in-

scribed in that arc, when the length of each side of the polygon
is indefinitely diminished. If we adopt this definition of the
length of an arc, we must shew that the limit mentioned
does exist, and is the same in whatever manner we suppose
the polygon inscribed, provided that each side is ultimately

indefinitely diminished.

Draw two chords dividing the whole arc we are consider-

ing into two portions; then in each of these subdivisions

place two chords dividing the whole arc into four portions
;

in each of the last subdivisions place two chords, and so on.

The perimeters of the polygons thus formed constitute a series

continually increasing ; and as it is easy to see they cannot

increase without limit, we prove the first point, namely, that

there is a limit to the perimeter of the inscribed polygon when
the length of each side is indefinitely diminished.

Suppose now two polygons with indefinitely small sides

inscribed in the curve, one of them being one of the series just

considered, and the other described after any other law. Draw
tangents to the curve at the angular points of both polygons,

thus forming one polygon circumscribing the arc. Then it is

easy to see that any chord of either polygon bears to the cor-

responding portion of the circumscribing figure, a ratio which
can be made as near to unity as we please by sufficiently

diminishing the length of each chord. Hence the perimeter of

each inscribed figure bears to that of the circumscribed figure

a ratio which is ultimately one of equality, and consequently

the ratio of the perimeter of one inscribed figure to that of the

other inscribed figure is ultimately one of equality. This

proves the second point involved in the definition of the length
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of an arc, namely, that the limit obtained is the same accord-

ing to whatever law the polygons be inscribed.

From this definition of the length of an arc it follows that

the ultimate ratio of the length of an indefinitely small arc to

its chord is one of equality, that is,

As

Tiiwrwn or

Jh+m]
= l

'
ulthnately

'

therefore *- ^/jl + (|J
•

.

309. Since secant PTx =
,J\

1 + (jj)*\ ,

1 dx
we have cos PTx = >, r,» = -j- .

7FW\ *

and sin PTx = cos PTx tan PTx

_dxdy _ dy
ds dx ds

'

310. If x and y be expressed in terms of 8 from the
equations

x = r cos 6, y = r sin 6,

ds ds dx

d0
=
dxd§

we have

_, dx n dr n
But -To = cos a -ya — r sin 0,

do do

dy . .dr n

dd
= sin0

de
+rcos6

'
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therefore Tf *J\{%)'
+•*}

We have shewn in Art. 279, that

d6
tan <p = r -T- ,T dr

where
<f>

is the angle between the radius vector at the point

whose polar co-ordinates are r, 6, and the tangent at that

point. Hence

d6 d6
T - T

. , dr dr dO
«" + r, vxr—sr-'s-

'7R*)T~£
Similarly cos <j> = -=-

These results may also be deduced immediately from the

PL
figure in Art. 279 ; for sin </> is the limiting value of p-~

,

., . . , PL As . rsinA0 As ,.

rt*
that is, of -r— . T^ or of — . yrp. . Ine limit of

As PQ As PQ
rsinA0 . rdd . ,, ,. . . As . ,

is —=— ; and the limit ol -jr— is unity ; hence
As ds

' PQ J

rd9
sin <\> = -j- Similarly the value of cos

<f>
may be found.

ds
311. The value of -™, in Art. 310, may also be obtained

thus

:

Let P, Q, be points on a curve, and suppose

SP = r, PSx=6,
SQ = r+Ar, QSx = 6 + A6.

Draw PL perpendicular to SQ,
then

PL = r sin A6,
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LQ = r + Ar — r cos Ad

A „ • »A»= Ar + 2r sin —

.

Also the chord PQ = j{PU + LQ").

From this, if we proceed according to the method of the

preceding Articles, we shall arrive at

S-vt+©V
312. If A denote the area contained between a curve and

the axis of x, we have shewn in Art. 43 that

dA

313. To find the differential coefficient of the area of a

curve referred to polar co-ordinates.

Let A denote the area contained between the radius SP,

the radius SG drawn to some
fixed point on the curve, and
the curve CP. Let AA denote

the area PSQ. With centre S
and radius SP describe an arc

meeting SQ at L, and with

centre S and radius SQ describe

an arc meeting SP produced at

M. Then AA lies between PSL and QSM, that is, between

t*A0 , (r + Ar)\ a

therefore -r-s lies between — and -—-—- .

Ad 2 2

Hence, proceeding to the limit, we have

dA = r^

d0 2
'

314. Differential coefficient of the volume of a solid of re-

volution.

Suppose the curve APQ in the figure of Art. 307 to

revolve round the axis of x, and thus to generate a solid.
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Let V denote the volume of a portion of this solid contained

between two planes perpendicular to the axis Ox, one drawn
through a fixed point A and the other through P. Let AV
denote the volume of the solid contained between planes

through P and Q perpendicular to the axis. The volume
of a cylinder having MN for its axis and for its base the

circular area formed by the revolution of PM round the axis

Ox, is iry'Ax. The volume of a cylinder having MN for its

axis and for its base the circular area formed by the revolu-

tion of QN round Ox, is ir (y + Ay)" Ax. Hence AV lies

AV
between try

1Ax and ir{y + Ay)' Ax. Therefore -r— lies be-

tween iry
2 and tt [y + Ay)\ Hence, proceeding to the limit,

we have
dV ,

315. Differential coefficient of the surface of a solid of re-

volution.

Let P, Q, be two points in a curve which by revolving

round the axis Ox generates

a solid of revolution. Let A
be a fixed point on the curve,

and supposeAP= s, PQ=As.
Let S denote the area of the
surface formed by the revolu-

tion of AP, and AS the area

of the surface formed by the
revolution of PQ. Draw PR and QT each equal to As and
each parallel to Ox. If PR revolve round Ox it generates
a cylinder, the surface of which is HiryAs. If QT revolve

round Ox it generates a cylinder, the surface of which is

2Tr(y + Ay) As. We assume as an axiom that the surface

generated by the arc PQ lies between the former and the

latter. Hence AS lies between 2-rryAs and 2ir (y + Ay) As,

and proceeding to the limit, we have

dS

therefore
dx

™
dx'
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EXAMPLES.

ds lid2 — eV\
1. In the ellipse -r- = */ (

— r ) 5 and if x = a sin <£,

T7 = aV(l -e2
sin

s
0).

2. In the parabola t/
2= \ax, -=- = /( j.

3. In the circle -7- = - .

ax y

4. Find the differential coefficient of the arc of the curve

e»(e*-l) = e* + l.

p ,.
as e^ + l

T 1 is * * ds a?
o. In the curve x3 + y' = a3 , -r- = —r

.

J ax #4

6. In the curve r = a (1 + cos 0), -^ = 2a cos - .

7. In the curve r=a", ,» = r V{1 + (logo)*}.

8. In the curve r*=a* cos 20, -™ = - .

9. In the curve r=a&, -j- = — '

.

ar a

10. If e"* = cos x, -j- = cos x.



( 336 )

CHAPTER XXIV.

CONTACT. CURVATURE. EVOLUTES AND INVOLUTES.

316. Let y=<f>(x) be the equation to one curve, and

y =yfr (x) the equation to another ; then if <p (a) = ty (a) the

curves intersect at the point whose abscissa is a. If more-
over <$>' (a) = ifr (a) the curves have a common tangent at the

common point ; in this case they are said to have a contact

of the first order. If moreover
(f>"

{a) = yfr" (a) the curves are

said to have a contact of the second order. If <f>(a) — TJr (a),

(j> (a) = •>// (a),
<f>"

(a) = yfr" (a),
<f>'"

(a) = tjr'" (a), and so on up to

</>" (a) = iy1

(a) , the curves are said to have a contact of the

71
th order at the common point. When we speak of two curves

having contact of the nth order we imply that they have not

contact of a higher order ; that is, with the preceding notation

we imply that (£"
+1

(a) is not equal to i/r
n+1

(a).

317. If two curves have at any point a contact of the
nth order, then in the vicinity of the common point no curve
can pass between them unless it has with both of them a
contact of an order not lower than the «th

. For let y = </> (w)

and y = yfr(x) be the equations to two curves which have
contact of the nth order at the point x = a; and let y1

denote
the ordinate in the former curve corresponding to the abscissa

a + h, and yt
the ordinate in the latter curve corresponding to

the same abscissa ; then, by Art. 92,

y=^(a) + ^'(o)+ ^"(a)... +^"(a) +j^-*"
tl

(a + <»A),

2,l
=^(a)+^'(a)+ ^^"(a)... +

|

-t"(«)+
17STt

n+1
(« + ^).
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Hence, since the curves have contact of the nth order,

y.-y»=|-^r{»'"(
a+gA)-»Jrtl

(
o+gA)}-

Now suppose y = xix) *° De the equation to a third curve

which has contact of the mth order with the first curve at the

point x=a; then if y3
— % (a + h), we have

If m be less than n we can give such a value to A as will

render y, — y2
less than y, — ya

for that value of h and all

numerically inferior values both positive and negative. Hence
in the vicinity of the common point the second curve is nearer

to the first than the third is.

In the above expressions 6 denotes merely a proper fraction,

and it is not necessarily the same proper fraction in the

different cases.

318. The expression for yl
— yl

in Art. 317,. when h is

sufficiently diminished, has the same sign as

A" 1

{*""(«) -+""(«)}.

and therefore changes sign with h if n be even; therefore

if two curves have contact of an even order they cross each

other at the common point. If two curves have contact of

an odd order they do not cross each other at the common
point.

319. In order that a curve may have contact of the

n"1 order with a given curve, it appears from Art. 316 that

n + 1 equations must be satisfied. Hence, if the equation

to a species of curves contain n + 1 constants, we may, by
giving suitable values to those constants, find the par-

ticular curve of the species that has contact of the wth order

with a given curve at a given point. For example, the

equation to a straight line is of the form y = mx + c ; since

there are two constants, m and c, we may, by properly de-

termining them, find the straight line which has contact of

the first order with a given curve at a given point. If the
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given curve be y = </> (x), and the given point that whose
co-ordinates are x = a, y = <j> (a), then we must have

via + c = (/> (a),

and m=<j> (a) .

Hence m and c are determined.

If y = $ (a;) be the equation to a curve, then

y = 4> (a) + (x-a) <j>' (a) +^^V» ... +^^>(«)
is the equation to a curve which has a contact of the mth order

with the given curve at the point x = a. This may be easily

verified.

320. Circle of curvature. The general equation to a circle

involves three constants ; hence at any point of a curve a circle

may be found which has contact of the second order with the

curve at that point. We proceed to determine the radius and
the centre of such a circle.

Definition. The circle of curvature at any point of a
curve is a circle which has at that point a contact of the

second order with the curve.

Let (X-a)2+(F-&) 2 = p
s

(1)

be the equation to a circle, so that a, b, are the co-ordinates

of its centre and p its radius. From (1) by differentiating

we have

X-a + (F-6)^=0

If this circle is the circle of curvature at the point (x, y)
of a given curve, we must have

X = x ^

dj= dy_
v

dX. dx

d*Y d*y

dX* ~ dx'

(2).

(3).
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Hence, from (2),

1 +

Therefore y-b = -

a; _ a+(2/ _j
) | =

m

• (4).

dx'

dy

dx +m
dx*

L

.(5).

By (1) aad (5) we have

P =
l-(l)T

d?f
dx*

Hence the values of a, b, p, are found, and thus the position

and the radius of the circle of curvature at any point of a
curve are determined.

In the value of p it will be proper in any particular

example to give to the radical in the numerator the same
d*y

sign as -=-\ has, so as to make p positive. Hence if y be

positive and the curve concave to the axis of x we should put

P=-
1 +

\dx

da?

From the first of equations (4) we see that the point (a, b)

is on the normal to the given curve at the point (x, y).

The centre of the circle of curvature at any point is called

Z2
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for shortness the " centre of curvature.'' Also the radius of

the circle of curvature is called the " radius of curvature."

If a straight line be drawn from any point of a curve in any
direction the portion of this straight line which is intercepted

by the circle of curvature at the assumed point is called the

chord of curvature at the assumed point in the assumed
direction. By the nature of a circle the length of the chord

of curvature will be obtained by multiplying the diameter of

the circle of curvature by the cosine of the angle between the

chord of curvature and the common normal to the curve and
the circle at the assumed point.

321. If p be the perpendicular from the origin on the

tangent at the point (x, y) of a curve, we have

dy

'TOT
, - dp _ dx2

|
\dxl j dxda? \ dx b

)

\
X + y dx)dx'

Also, if r* = a;
2 + y*.

dr _ dy

dx * dx'

dt) civ
From these values of -J- and -j-, and the value of p given

in Ai-t. 320, we see that,

dp _ 1 dr

dx p dx'

. dr
and p = rT .

dp
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322. If x and y be each a function of a third variable t,

we have

dy d'y dx d*x dy

dy _dt_ d'y _ ~d? dt
~

d? dt

dx~ dx' M T^Y
'

dt \di)

Using these values, we deduce

mm'
P dy dx d^x dy

~d? dt~~dF dt

since

For example, if t = s the arc of the curve measured from
some fixed point, then

p = dSydx_£xdy ^
ds

2
ds ds* ds

bj Art . 30, (£)' + (!)'-

1

»
j, 1 _ d2

y dx d*x dy

p ds' ds ds" ds * ''

By differentiating (2) we obtain

n=i
dx<£x dydy
ds ds*'*' ds ds'

{) -

Square (3) and (4), and add ; thus

P
* \df) [ds'J

"

From (3), by means of (4), we may also deduce

d'y d'x

l = d£_ _d?
p dx dy

ds ds

323. If we put x = tqob0. and y = r sin 8, we have from
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Art, 201 the values of -f- and -j-^ . Substitute these values
ax oar

in the expression for p in Art. 320, and we find

HI)
p =—i-

—

drV_ d*r

de)
r
de%

r
B + 2

T „ 1 „ dr 1 du ,

It r=-, then -™=

—

s
-™, and

u do vr dd

d*r _ 2 fduV 1 d'u

Substitute these in the above value of p ; then

,±^,

del
)

U3
fM +

d^u
' d&

This result may also be found thus

:

r> i ^ nn , dr 1 Jm
By Art. 321 p = ,^ = -_

3 ^.

By Art. 284 £ = *+(£)'.

x , . I dp f ,
d 2u\ du

therefore __J=^+_j_,
^ l=-^(M+S)-
Hence

1

50*
T77 d1

m,
(
m+S)
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The chord of curvature passing through the origin will be
obtained by multiplying 2/> by the cosine of the angle be-
tween the radius vector and the normal to the curve at the
point considered. (Art. 320.) Hence the chord of curvature
through the origin

2tt
2 + 2

'

„(.
d*u\

?8 +
epj

324. If i|r be the angle which the tangent at the point
(x, y) of a curve makes with the axis of x, we have

yjr = tan
-1

-f-

,

' dx

<Py d*y

therefore ^ =_^ dx dx'

ds (dysf ds

£i
d
° {-(I

therefore
ds

325. If two polar curves have a common point the polar

co-ordinates of that point must satisfy the equations to both
curves. If they have contact of the first order at that point

the value of -¥ is the same for both curves at that point, and
dx dr

hence, by Art. 201, the value of -jj. is the same for both

curves. If the curves have contact of the second order the

d*y
value of -tK also is the same for both curves at the common

da?
d*r .

point, and hence, by Art. 201, the value of j- is the same

for both curves at that point. Proceeding in this way, we
6ee that if two curves have contact of the nlh order at any
point, if they are referred to polar co-ordinates, the values of



344 RADIUS OF CURVATURE.

iTfl' ~Jif"
'" Wd"

W^ ^e *^e same ^or both curves at the

common point.

326. Since K = k +k&
p r r \d8,

it follows from the last Article, that if two curves have con-

tact of the first order the value ofp will be the same for both
curves at the common point. Also, since

dp

dp dd . , ,
dr , d2

r

dr
°r

3?
1DV0lveS ^ r

' M>
and If

de

it follows that if two curves have contact of the second order

the value of -f- must also be the same for both curves at
dr

the common point.

327. We may apply the preceding Article to establish the
equation proved in Art. 321 as follows.

If R be the radius vector of a point in a circle,

P the perpendicular on the tangent,

c the radius of the circle,

b the distance of the centre from the origin,

we have, from the properties of a circle,

2cP=R' + c
i -b2

.

Differentiating, c —R -tt .

If this circle be the circle of curvature at a point in a
curve having r for its radius vector and p for the perpen-
dicular on the tangent, we have by the last Article,

R = r,

P=p,
dR_dr
dP~ dp'
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therefore c = r-1-\dp

dv
that is, the radius of curvature = r -=- .

dp

328. At a point where the radius of curvature is a maxi-

mum or a minimum the circle of curvature has contact of the

third order with the curve.

>(»?Since
a y

we have, when -4- = 0,
ax

3 {$ £~tej

{

l+ {£)\-°-

If in Art. 320 we differentiate the second of equations (2),

we have

dYd'Y d*Y
*dXdX* +{Y

- b)
dX>

= -

Hence

„dY d*Y
d*Y_

3 dX dX>
dX* Y-b

\dx I dx

'(ST
by equations (3) and (5) of that Article. In order that the
circle of curvature may have contact of the third order with

the curve at the proposed point, we must have

d3Y_d 3
i/

dX3 ~ da?
'
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This is the relation we have already shewn to hold at

points where the radius of curvature is a maximum or

minimum.

329. In the figure of Art. 284 let SP= r and SY=p;
if pt

denote the perpendicular from S on the tangent at Y
to the locus of Y, then will

P*
Pi= r

--

Let x, y, he the co-ordinates of P,

x, y, the co-ordinates of Y;

' dy'x Tx~ y

p"7Fm
(,) '

The equation to the tangent at P is

t) and f being the variable co-ordinates.

Since the point Y is on the tangent,

y'-y^ix-x) (2).

The equation to SYis v=^Z (3).
CO

But ST" is perpendicular to PY, therefore

(4).
y' _ ^
x' dy

"

Combining (2) and (4),

therefore yy + xx' = y'+ x* (5).

Differentiate (5), thus

„'
dJL + v

dt + x' + x ** = 2v ^ + 2x
dSy dx * dx dx * dx dx
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This by (4) reduces to

,, , dy 2x —x
therefore -r-, = — -^—, .

dx 2y -y

Substitute in (1), and we obtain

_ *" + y" _V
%

Pl
Jtf + tf) r

330. Definition. The evolute of a plane curve is the

locus of the centre of curvature ; a curve when considered

with respect to its evolute is called an involute.

If x', y, be the co-ordinates of the centre of curvature at

the point {x, y) of a curve, we have by Art. 320,

a._ a/ + (y_jflg = (1),

'+®"+<»-io3- «
. dy , d'y ,

By means of the equation to the curve y, -&
, and -3-3 can be

expressed in terms of x ; hence from the above equations we

can, by eliminating x, obtain a relation between x and y
which is the equation to the evolute. From the above equa-

tions, x and y may be considered functions of x ; differen-

tiating the first, we have

1 +
\,dx)

+ {Jf V) dxt dx dxdx

By means of (2) this gives

f +ff = (3),
dx dx dx

therefore l +|^= (4) "
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Hence (1) may be written

which shews that the point (x, y) is situated on the tangent to

the evolute at the point {x, y
1

). Also (1) shews that the

point (x, y) is on the normal to the curve at the point (x, y).

Hence the normal at any point of an involute is a tangent at

the corresponding point of the evolute.

331. If p be the length of the radius of curvature at the

point (x, y) of a curve, and x, y the co-ordinates of the centre

of curvature, we have

p>=(x-xy+(y- yy.

As x and y are functions of x, so also is p ; hence differen-

tiating we have

<*-*->(i-£>(.-/>(|-f)=,£.

By means of equation (1) of the preceding Article this gives

*"»%+<*-*>%">% «•

From equations (1) and (3) of the preceding Article we obtain

d^_ dy_
|

(dx\* /d£\ s
} \

dx dx
|

J \dx)
+
\dxj

[ _
,

1 ds

x -x~ y -y~~ \{x'-xY+ {y'-y)'\ ~pdx'

s being the length of the arc of the evolute. See Art. 307.

Hence, by (1),

lw-xY+{y'- yy\% = ±p
d
£,

therefore -j- = ±-4-
ax dx

Since j
+

=0, we nave» by Art 102,

s' + p = some constant, say I.

.(2).
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Let ABC be the given curve, and A'B'C the evolute,

BB being the radius of curvature of the given curve at B,

and GO' at C. Then if A' be the fixed point on the evolute

from which the arc is measured, we have

A'B' + B'B = l,

A'B'C' + C'C=l,

therefore BG' = BB- GC.

Hence, if a flexible string of length I be fastened at A' and
placed in contact with the evolute A'B'C', then, as the string

is unwound from the evolute, the free end of it will describe

the involute GBA. From this property the names evolute

and involute are obtained.

In the figure as s increases p diminishes and we have

s + p = a constant ; if s' be measured in the direction from C"

towards A', then s and p increase together and we have

s — p = a constant.

It will be observed that a curve has only one evolute ; but

a curve has an infinite number of involutes, for in the equa-

tion s + p = some constant, the constant may have any value

we please.

332. The following polar formulae for determining the

evolute of a curve are sometimes useful.
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Let be the centre of curvature corresponding to the
point P of a curve referred to polar co-ordinates. Let SY be
the perpendicular on the tangent at P.

I

Let SP= r, PO = P, SY = p,

SO = r', p = perpendicular from S on PO.

From the triangle SOP we have

r'
2 = p

2 + r2 -2rpcos SPO
= p* + r*-2rp sin SPY
^p' + r'-Upp (1).

Also p
i = r'-p- (2).

'-'$ «
From the given equation to the curve we can find p in terms
of r, and then between (1) and (2) we can eliminate r, and
thus we have an equation between p and r to determine the

locus of 0. Since PO is a tangent to the locus of 0, p' is

the perpendicular from the origin on the tangent to the

evolute at 0.

In the figure the curve is drawn concave to the pole.

If the curve be convex to the pole -j- is negative (Art. 29-1),

df
and we should take a = — r -v- : in this case we shall find in-

dp
stead of (1) the equation

r*=p*+r, + 2pp.
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Thus in both cases we have

333. Involute of a circle.

351

Let S be the centre of a circle, APQ a portion of the

involute, OP = OA the portion of the string unwound. Let
SO = a, OSA = <jj, and let x, y be the co-ordinates of P,
the origin being at S, and SA the direction of the axis of x.

Then OP = a</>,

x = a cos (j> + a<j> sin <£,

y = a sin <£ — a<£ cos <£.

Let .4P = s, then

<ty>

: d(f>.

Hence, as we shall see in the Integral Calculus,

1. In the curve

EXAMPLES.

y = \(?+*~%

the ordinate at any point is a mean proportional between

the radius of curvature there and at the lowest point.
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2. In the curve

y = xi -±xs -\%x*,

the radius of curvature at the origin = 3^.

3. In the curve

y = x3 + 5x* + 6x,

the radius of curvature at the origin = 22.506...

Find at what point the radius of curvature is infinite.

4. If <j) (x, y) = be the equation to a curve, then

(d<f>Y)i

P =
®Mf)T

/ctyV Sg d<pd<p d'<t> fd^d'^
\dy) dx* dx dy dxdy \dx) dy*

Find the parabola whose axis is parallel to that of y
which has the closest possible contact with the curve

x
y = -J at the point where x=^a.

Result. \ x ] = -

V 2/ 3
y-

6. If r = a (1 — cos 6), p = — sin -

.

17 -rr m a ,\ a (5 — 4 cos #)*
7. Ifr = a(2cos*-l), p = \_<. cos0

'

8. If the curves f(x, y)=0 and <£ (x, y) = touch, shew that

at the point of contact

df d<f> df d<f>

dx dy dy dx

9. Apply the last result to find if the straight line

*+f-l=0a o

touches the curve

xi +y$-(a' + b*)i=0.

10. When the angle between the radius vector and the per-

pendicular on the tangent has a maximum or minimum
value, shew that pp = r2

.
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dx b
1

11. If at every point of a curve 2a -j- — V y, then

a = „ ",.. . Shew also that - + -=-, where n is ther
y — b n p a

portion of the normal intercepted by the axis of x.

12. Find the value of p when r= a cos 6.

13. Ifa:=V(ca +A find p.

14. The equations which determine the co-ordinates a, b, of

the centre of curvature of a curve may be put in the
following form, where r

2 = x1 + y* :

da
d'x dV „,<fy dV

2b -A =
dtf dy*' dx* da?'

15. In the parabola y
1 = 4ma;,

o LQ r
2a;i 2(m + x)l

a = 2m + 3x, b = t-
, p =—

-

—
;

—

.

slm,
r

. ijm
Shew that the circle of curvature at any point of a
parabola, except the vertex, cuts the axis at two points

on opposite sides of the vertex.

16. If Ax*+By*+C=0,

AlA-B) „ , BIB- A) 3then a = v

BQ
' x\ b = v

AQ f.

17. If -# = -, then p = .

ax s a

1 8. The radius of curvature of the curve y
2 = -—:

,J
a; - 4a

at one of the points where y = is — , and at the
o

other —

.

19. If s = a sin" yjr, find p. See Art. 324.

20. Find the equation to the circle of curvature of the curve
y* = 4aV — x*, at the origin.

T. D. c. A A
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21. If y + o^=0, thenp=^t^.
ay

„, ,,. , . , ( 3aV I Sa\' a? , ,

22. bhew tnat the circle \x—T") + ( 2/
— T )

=
"9 an<* tne

curve s/x -V >Jy = >Ja have contact of the third order at

the point x = y = -.

a a
23. If r = a sec

s - , find p. Result. p = 2a sec
3 -

.

24. Find the two parabolas which, having their axes parallel

to the co-ordinate axes respectively, have a contact of

the second order with the circle x2 + y
2
=5a*, at the

point x = a, y = 2a.

„ .. / SaV 2a Ha \ / aV 16a /11a \
Results, (y-^^-^-x), (x - -

J
=- (_ -

y) .

V 1 - --
25. In the curve - = ~(e'+e '), shew that the co-ordinates

c 2

of the centre of curvature are

Y=2y, X = x-yJ(£-l),

and find the equation to the evolute.

26. Find the equation to the evolute of the ellipse, and the
whole length of the evolute.

Results. {ax) l +{by)*={a*-V)*; *(£

27. If r=f(.p) be the polar equation to a curve, shew that
the equation to the locus of the foot of the perpendicular

'2

drawn from the pole on the tangent is p = -^

—

y . Find
12 j [r

)

tne locus when p
2=

, and shew that it is a circle.r 2a — r
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28.
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37. Shew that corresponding to the portion of the curve

a'y = asx* + x* near the origin, the evolute is approxi-

mately a curve whose equation is

{y-a)3 + ^x = 0.

38. Shew that the chord of curvature parallel to the axis

V -

of a; of the curve sec- = e'* is constant; and that the
a

evolute of this curve for the portion near the origin

is approximately a curve whose equation is

sec I
-^ =em-

39. If along a curve and its circle of curvature at any point

equal arcs (Ss) be measured from the point of contact

and on the same side- of it, shew that the distance be-

tween their extremities will be ultimately - -j-——

.

40. Shew that in general a conic section may be found which
has a contact of the fourth order with a given curve at

a proposed point, and shew how to find it when the

length of the curve is given in terms of the angle which
the normal makes with a fixed line.

If the curve be an equiangular spiral, and a be the
angle between the radius vector and the tangent at any
point, shew that the conic section is an ellipse, the
major axis of which makes with the normal to the
curve an angle a> given by the equation

tan 2o> + 3 tan a = 0.
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CHAPTER XXV.

envelops.

334. Suppose

F(x,y,a)=0 (1)

to be the equation to a curve, a being some constant quantity.

By changing a into a + h, we obtain another curve of the
same species as (1), the equation to which is

F{x,y,a + h) = (2).

The point of intersection of (1) and (2) will be found by
combining the equations. Now (2) may be written

F{x,y, a)+kF' {x, y, a+0A)=O (3),

the accent denoting that F (x, y, a) is to be differentiated

with respect to a, and in the result a changed into a + Oh.

Hence, combining (3) and (1), we have the point of inter-

section determined by

F(x, y, a) = 0, and F' (x, y, a + 0h) =0 (4).

If we diminish h indefinitely, the equations (4) become

F(x, y, a)=0, and F (x, y, a) = (5).

The point determined by equations (5) is the limit of the

intersection of (1) and (2).

If between equations (5) we eliminate a, we obtain the

equation to a curve which is called the locus of the ultimate

intersections of the curves formed by varying a continuously in

the equation F(x, y, a) = 0.

The quantity a is called the parameter of the curve.

335. The locus of the ultimate intersections of a series of
curves touches each of the series of intersecting curves.
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Let F (x, y, a) = be the equation which gives the series

of curves by varying continuously the quantity a. Then the

locus of the ultimate intersections is found by eliminating a

between
F(x,y,a)=0 '.

(1),

and F'{x,y, a) =0 (2).

Suppose from (2) we obtain a in terms of x and y, say

a = <p (x, y) ; then if we substitute in (1) we have

F{x,y,<f>(x,y)}=0 (3),

which is therefore the equation to the locus of the ultimate

intersections. Now if for any assigned value of a the equa-

tions (1) and (2) give possible values to x and y, then the

curve represented by (1) when a has this assigned value, will

meet the curve represented by (3).

The value of -p for the curve (1) is found by the equation
ax

dF{x, y, a)
+
dF(x, y, a) dy = ()

dx dy dx

The value of Jf- for the curve (3) is found by the equation

dF{x, y, <j> ) dF(x, y, <f>)
dy

dx dy dx

dF(,
+ - i^)l^ +#<M = o (5 ).

d(f> [ax dy dx)

But -^ only differs from -y- in having $ (x, y) in the
d(p da

place of a; hence by (2) we have at the point where (1)

and (3) meet, -y-r = 0. Thus (5) becomes at that point
d<p

dFix, y, $) dF(x,y,4>) dy =Q
dx dy dx

Since at the point of intersection of (1) and (3) we have

a =
<f>

(x, y), equation (6) gives for -j- at that point the same
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value as equation (4). Hence (1) and (3) touch at their

common point.

From this property the locus of the ultimate intersections
of a series of curves is called the envelop of the series of

curves.

336. Example. Required the locus of the ultimate inter-

sections of a series of parabolas found by varying a in the
equation

1+a2
,

J
. 2

Here F(x,y, a) = y — ax +—— x* = (1),
2p

F'(x,y,a) = ^--x =0 (2).

From (2) a=^-.
x

Substitute in (1) and we have

,

p'+x2

A

or x" + 2py — p* = 0,

which is the equation to a parabola.

337. Required the locus of the ultimate intersections of a
series of normals drawn at different points of a given curve.

Let x, y be co-ordinates of a point in the given curve, then

x'-x+(y'-y)p
x
= (1)

is the equation to the normal at that point ; x, y, being the

variable co-ordinates. From the equation to the given curve

y and -4- can be expressed as functions of x ; thus x is the

parameter in (1), by varying which the series of normals
is obtained. Hence the required locus is to be found by



360 ENVELOPS.

eliminating x between (1) and the equation obtained from (1)

by differentiating it with respect to x, which is

<.*)

It appears from (1) and (2), compared with Art. 320, that

x
, y will be the co-ordinates of the centre of curvature at

the point {x, y) of the given curve. Hence the locus of the

ultimate intersections of the normals to a curve is the evolute

of that curve.

338. It may happen that the envelop does not touch all

the curves of the series, as will appear from an example.

Suppose the centre of a circle of variable radius to move
along the axis of x, so that the

abscissa OP of its centre and its

radius PM are the abscissa and
ordinate of an ellipse AMB which
has for its equation

~2 „,2

— + 2-=i-2 ~ 2
x

•m n

required the envelop of the system of circles.

If OP= a, the equation to the circle will be

(x - a)' + y' - '-«*)=<».

Hence differentiating with respect to a, we have

n a
x -a ? = ;m

• 0).

therefore 0,= m2 + n*

'

Substitute in (1) and we obtain

rri'+ri'
+
n ,i

1

which is the equation to the envelop.

.(2).

(3),
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For all values of a comprised between -77—5 ^ and m,
_

V(»»+m)
the circles do not ultimately intersect, and are not touched by
the envelop : for the value of y found from (2) and (3) is

iri'

which is impossible when a is greater than ,. 5-

.

r 6 V(w + n')

Therefore in the enunciation of Art. 335 we do not assert

that the envelop touches each of the series of curves, but that

it touches each of the series of intersecting curves. The de-

monstration in that Article assumes that the equations (1) and

(2) lead to possible values of x and y; or in other words, that

one curve of the series ultimately intersects the adjacent curve.

339. The method of Art. 334 may be extended to the case

in which there are n parameters connected by n — 1 equations.

For example, suppose

F(x,y, a, b, c) = (1)

to be the equation to a curve, the parameters a, b, c, being

connected by the equations

<£, {a, b, c) = 01

fc(a, b, C)=0j (2) '

and that we require the locus of the ultimate intersections of

the curves obtained by giving to the parameters in (1) all

possible values consistent with (2). If from equations (2) we
fiud the values of b and c in terms of a and substitute them in

(1), we may then proceed as in Art. 334. If however the

solution of equations (2) be difficult we may proceed thus.

Regarding b and c in (1) as implicit functions of a, we have,

if we differentiate with respect to a, and put the result equal

to zero as in Art. 334,

dF dFdb dF_dc_ =Q (3)
da db da dc da "

To find -j- and -3- , we have by differentiating (2),
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.(4V

di
l

d<p
t
db dfa dc _ "

da db da dc da

ffi«
|

d
<J>2

db dft, dc = ^ |

da d6 da dc da I

If the values of -j- and -=- from (4) be substituted in (3),

and then a, b, c, be eliminated between (1), (2), and (3), the
resulting equation between x and y will determine the re-

quired locus.

This process may be rendered more symmetrical by suppos-

ing a, b, c all functions of a third variable, say t ; then using

Da, Db, Dc for -=- , -=-
, -^ respectively, we. have instead of

(3) and (4) the equations

dF „ dF _, dF _ ,

da db dc

da db

d
±*Da +

d
}J
*Db+*pDc = Q

da do dc

dc
.(5).

And the solution of the problem will be facilitated by the use
of indeterminate multipliers. Thus multiply the second of

equations (5) by \, the third by /x, and add to the first

;

this gives

(dF dfa dd>
3\ _ (dF ^ dtb, d<}>\ _.,

\dc dc >%)»— («).

Now since X and /i are at present undetermined, we may
take them such that

dF
da da

+ x=r . + /t^ =
da

dF ^ dd>, dd>, „

d&~ di db

(7),
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from which it follows by (6) that

"
+*$ +'$- «

Hence we have to eliminate a, b, c, X and
fj,

from equations

(1), (2), (7) and (8) ; the result is the equation to the envelop

required.

Example. A straight line moves so that the length inter-

cepted between the co-ordinate axes is constant : required the

envelop of the moving straight line.

Let the equation to the straight line be

?+f=l (9),
a b

so that a* + V = a constant = k*, say (10).

From (9)
-

2
Da + 1 Db = 0,

a b

from (10) aDa + bDb = ;

thus (? +Xa\Da+ (^ + \b\l)b=Q,

therefore — +\a = 0, andp + Xi» = 1 );

multiply the first of these equations by a and the second by
b and add ; thus

-+f + \(a2 + J
2
) = 0,

a

that is, 1 + \k* = 0, therefore X = — p

.

Then from (11)

as = Ic
l
x, and b* = tfy.

Therefore by (9)

or x% + y% = A^.

This equation determines the envelop.
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EXAMPLES.
"'" '*

• •*• y
1. Find the envelop of the series of straight lines - + r = 1,

where Va + V& = V& a constant.

.Reswft. a;* + */* = &*.

2. Ellipses are described with coincident centre and axes,

and having the sum of the semiaxes = c. Shew that

the equation to the locus of ultimate intersections is

XS + yi = ci.

3. Find the envelop of all ellipses having a constant area,

the axes being coincident.

Result. £x*y' = c* where ttc* is the given area.

4. A straight line cuts off from the co-ordinate axes distances

AB, AC, such that nAB+ AC = c, shew that the

envelop of the straight lines is

(y + nx — c)
! = inxy.

5. Find the evolute of a parabola y
i= ±ax, by the method of

Art. 337, taking the equation to the normal in the form

y = m (x — 2a) — am3
.

Result. 27ay" = 4 {x - 2a)
9

.

6. Find the evolute of the curve x* + y* = a*. See
Example 9, to Chapter XVIII.

Result, (x + y)% + (x — y)% = 2a*.

7. Shew that the envelop of the series of parabolas

yo+y®-
under the condition ab= c

2
, is an hyperbola having its

asymptotes coinciding with the axes.

8. Find the locus of the ultimate intersections of the

straight lines drawn at right angles to normals to

the parabola y
2 = Aax, at the points where they cut

the axis.

Result, y* = 4a (2a — x).
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9. Straight lines drawn at right angles to the tangents

of a parabola at the points where they meet a given

straight line perpendicular to the axis, are in general

tangents to a confocal parabola.

10 Find the envelop of the curves (—7— ) + (
]T~ )

= *>

the variable parameters a, b, being connected by the

equation g) +Q =1.

Result, p + 75 = £•

11. Circles are described on successive double ordinates of a

parabola as diameters : shew that their envelop is an
equal parabola. Find what part of this system of

circles does not admit of an envelop.

12. A circle moves with its centre on a parabola whose
equation is y* — iax = 0, and always passes through
the vertex of the parabola : shew that the circle always
touches the curve y" (x + 2a) + aj

3 = 0.

13. A series of parabolas of latus rectum I is described with
their vertices in a given parabola of latus rectum I'.

Shew that the locus of the ultimate intersections is a

parabola with latus rectum I + V, the concavities being

in the same direction and the axes parallel.

14. Find the envelop of all ellipses having the same centre

and in which the straight line joining the ends of the

axes is of constant length.

Result, x ± y = ± c.

x* if
15. From any point of the ellipse -5 + ra = 1, perpendiculars

are drawn to the axes, and the feet of these perpen-

diculars are joined: shew that the straight line thus

formed always touches the curve I- I + (r) = 1.
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16.
x2 y

From every point of the ellipse ji + p ~ * = ° pairs of

x2

v
2

tangents are drawn to the ellipse -= + 75 — 1 — :

a
shew that the locus of the ultimate intersections of

h2
x? kV

the chords of contact is —r- + -jj- = 1 •

a

17. Circles are drawn passing through the origin having

their centres on the curve cfy
2— b" (2ax — x2

)= : shew
that the locus of the ultimate intersections of these

circles is (x* + y
2 — 2ax) 2 — 4aV — 4?ri/

2 = 0.

18. The circle whose equation is x2 + y
2 + lax + 2by + 2c = 0,

is cut by another circle which passes through the

x1 v2

origin and whose centre is on the curve -5 +^ = 1 :

a P
shew that the chord joining the points of intersection

touches the curve aV + P'y
2 = {ax +by + c)

2
.

19. Find the locus of the ultimate intersections of the

straight lines

- + -)

,

where 6 is the variable parameter.

Result. 2y = c (e c + e ').

20. The equation to a spiral is r" cos n6= a" ; straight lines

are drawn through the extremities of the radii vectores

at right angles to them : shew that the envelop of these

straight lines is the curve

71

r" cosm0 = am, where m =
.

' n + 1

21. A series of ellipses has the same centre and directrix

:

shew that the envelop is a pair of parabolas, but that

the envelop will not meet those ellipses whose eccen-

tricity is less than— .



ENVELOPS. EXAMPLES. 367

22. Find the Tocus- of'the ultimate intersections of ,ap ellipse

which touches a given straight line at a given point

at the -extremity of the axis minor, the excentricity

varying da the »ajis major. Find the limits of the

excentricity in order that two consecutive ellipses may
intersect.' ' '"- •->

s~

'•.; '•'
> i

1
• IV- v

23. A straight line is drawn from the 'focus to any. points of

a conic section, and a circle is described "on it as a

diameter : shew that the locus of the ultimate inter-

sections of. all such circles is a circle, except; in -a ,

certain case, where it is a straight line.

24. Shew that- the locus of the,, ultimate intersections of all

the chords of an ellipse which joihlhe points of con-

tact of pairs of tangents at right angles to one another
is a confocal ellipse. * r.

25. Find the locus of'the ultimate,intersections of the straight

lines x eos 30 + y sin 3d ="& (cos 20)*, where & is -the
"

variable parameter.

Result, (x* + y*Y = a* {a? - f).

26. Find the envelop of the circles described on the radii of'

an ellipse, drawn from the centre,* as diameters.

Remit.
.
(a? + y

2
)" =«V + b*y\

'

i '•.•-..
.

'6

27. On anv radius vector of the curve r = c sec" - as diameterj - « « n

is described a circle : shew that the envelop of all such
'" '--— -; e

circles is the curve r = c sec"
l

.

28. Find the locus of 'the ultimate intersections of a family

of parabolas of which the pole of a given equiangular

•spiral is the focus, and its tangents directrices. '
*•

'

*'

Result. A similar equiangular spiral.
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29. Perpendiculars are drawn from the pole of an equi-

angular spiral on the tangents to the curve : find the

envelop of the circles described on these perpendiculars

as diameters. .

Besult. A similar equiangular spiral.

30. From every point of a parabola as centre a circle is

described with a radius exceeding the focal distance

of the point by a constant quantity : find the envelop

of the circles.

Besult. (x + c + a)y + (x — a,y— o^= ; where c is

the constant quantity.

31. Find the envelop of the straight lines obtained by vary-

ing 6 in the equation ax sec 6— by cosec = a2 — b".

Result, {ax) * + (fy)
5 = (a

2 - V)*

32. From a fixed point A in the circumference of a circle

any chord AP is drawn and bisected at IT, and on
PH as diameter a circle is described : find the locus
of the ultimate intersections of the system of circles

described according to this law.

Besult. a* {x
1 + f) = (2x* + 2tf- Baxf ;

where x* + y* = lax is the equation to the given circle.
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CHAPTER XXVI.

TRACING OP CURVES.

340. In this Chapter we shall give some examples of

tracing curves from their equations.

Example (1). Let y* = x'-T (
' )-

First find the value of -f- : taking the logarithms of both
dx

sides of the equation and differentiating, we have

\ dy _\ x x

y dx x as* — id' x' — a*

'

therefore ^ = + *fT~^ {1 + ^L__- ^-A .... (2).
dx *J{x — a

)
[x x^-ia* x'-d2

)

Next find the asymptotes : since

y=-
i--1

a?

therefore y = ± x [\ - -^
J

[\ - JJ

f 2a2
2a* ) f,

.
a" 3a*

\

f 3a* [

=4-S-} «
Hence y = #

and y = -x
are asymptotes.

t. d. c. B B
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Also when x = + a we see that y is infinite.

Hence x — a

and x = — a

are asymptotes.

We may now assign different values to x, and note the

corresponding values of y and -& obtained from (1) and (2).

Since the curve is symmetrical with respect to the axis of x,

we may confine our attention to the positive values of y.

When x-0, y = 0, -^=±2.

From x = to x = a, y is possible.

When x = a, y= oo , -^ = 00.

From x — a to x = 2a, y is impossible.

When x=2a, y = 0, -? = 00

.

When x is greater than 2a, y is possible.

It is not necessary to give negative values to x in this

example, because the curve is symmetrical with respect to

the axis of y.

If we draw the asymptotes and make use of the above

list of particular values of y and — , we shall have sufficient

materials for ascertaining the general form of the curve. If

necessary, in any example, we may find -r^, in order to

determine the points of inflexion ; also by examining when ~
vanishes, we can determine the maxima and minima values

oiy.

If we take the upper sign in equation (3), we have for

the asymptote

y = * (4)

;

and for the curve y = x —— &c (5).
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When x is very large the terms included in the &c. of

equation (5) will be very small compared with — . Hence

comparing (4) and (5) we see that corresponding to the same
abscissa the ordinate of the curve is less than that of the
asymptote, and therefore the curve lies below the asymptote
as represented in the figure.

\
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If the three series be multiplied together we have

,
/ 3a, 11a* \

(_= ±lx-3a +

y — x — 3a

y = — x + 3a

11a' \

2x
"')' .(3).

Hence

and

are asymptotes.

Also from (1) x = — 3a

is an asymptote.

From (1) and (2) we have the following results, connniD"1

ourselves to the positive values of y.

From x = to x= a, y is possible.

When x = a,
dy

*=
' tr
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From x= a to x = 2a, y is impossible.

When x= 2a, y= 0, Jf
— oo

.

When x is greater than 2a, y is possible.

When cc is negative and between and — 3a, y is impossible.

When x = — 3a, y = <x>, -If = oo .

When a; lies between — 3a and — oo
, y is possible.

From (3) we see that the equation to the curve when x
is very great is approximately

Ua"
y= x- Za+

-2x->

and whether x be positive or negative x —3a + —— is

numerically greater than x — 3a. Hence the curve lies above

the asymptote.

342. In the above examples the value of y is given

explicitly in terms of x. In a similar manner we may pro-

ceed if a; is given explicitly in terms of y. But if the equa-
tion connecting x and y does not admit of easy solution we
must abandon this method. In such cases we may find the

asymptotes by Art. 277 : we may determine the nature of

the curve near the origin by a method exemplified in the

next two Articles; from these results we may obtain some
idea of the form of the curve. By transforming the equation

to polar co-ordinates we shall sometimes be enabled to trace

it move accurately.

343. To determine the form of the curve

x* - aya? + by' = (1)

near the origin.

First, suppose that near the origin the term by3 can be

neglected in comparison with the other two terms in (1) ; in

that case we should have

x* — ayx*= 0,

therefore x* = ay.
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This makes y vary as x\ and therefore y* vary as x\

Hence the neglected term by* varies as x", while the terms

retained, x* and ayx*, vary as x\ But by taking x small

enough x' can be made as small as we please compared with

x*, and therefore near the origin one branch of the curve may
be found approximately by neglecting by". The branch we
thus obtain, being determined by the equation a? = ay, is

a portion of a parabola having its axis coincident with that

ofy.

Next, assume that near the origin the term aya? may be

neglected in comparison with the others. We thus find

x" + bf = 0;

therefore y varies as x'.

Hence the neglected term ayx* would vary as a^' ; that is

as xs
, while the terms retained would vary as x*. But since

10

x 3 can be made as great as we please compared with x*

by taking x small enough, we do not obtain an approximate

branch near the origin by neglecting ayx'.

Again, assume that x* may be neglected near the origin

;

then

by' - ax'y = 0,

therefore by' — ax' = 0.

Hence y varies as x ; the terms retained vary as Xs and the

rejected term varies as x* ; and thus an approximation to the

curve near the origin is given by

btf-ax'^O, or y=±x
/l /y

The figure shews the nature of the
curve near the origin ; AB is the para-

bolic branch, and CD, CD', are the two
branches found by neglecting x'.
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The conclusions in this case may he verified by solving the

given equation with respect to x%
. We thus find

*8 =
f {« ±V(a' -<%)}.

Expand ^(a'—iby) in powers of y by the Binomial Theorem,
and take the upper sign, then

jb* = ay approximately

;

with the lower sign

a? = -y* approximately.

In this manner, or by transforming the equation into a
polar form, we may complete the tracing of the curve. It will

be found that the branches extending from the origin to G
and B respectively, unite, thus forming a loop. The branch
from the origin to D' extends to infinity, and has no recti-

linear asymptote. The curve is obviously symmetrical with
respect to the axis of y.

344. Determine the nature of the curve

y*+ ay*x— x*=
near the origin.

First, if we neglect x* we have

y*+aytx = 0,

therefore y* = — ax.

Hence x varies as y
2

; the rejected term varies as y
s
, while

the terms retained vary as y*, and therefore we have in the

parabola y* = — ax an approximation to the given curve near

the origin.

Next, reject the term ay2x ; thus

y
4 -x< = 0,

therefore y = + x.

Hence y varies as x ; the rejected term varies as a?, and
the terms retained vary as x* ; hence this does not give us

an approximate branch.
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Again, reject y*
; thus

ay'x — x* = 0,

Xs

therefore y a

Hence y* varies as x"; the rejected term varies as x',

and the terms retained vary as

a;
4
, and consequently we obtain

an approximate branch. ^
The branch to the left of the

axis ofy is that given by y*= — ax,

and the cusp to the right of the

axis of y is that given by y* = .

In this example, y* may be found
in terms of x and the whole curve traced.

345. We may observe that in the examples of the pre-

ceding Articles, the supposition which was found inadmissible

near the origin, will be admissible for points at a very great

distance from the origin. Thus if

y* + ay"x —x" = 0,

when x and y are indefinitely great, ay'x may be neglected

in comparison with y
l and x* ; and y* = x*, or y = + x, will be

an approximation at points remote from the origin. If we
find the asymptotes by Art. 277, we shall have

-±(— !);

to which y = + x

may be considered an approximation when x and y are inde-

finitely great.

346. Required the nature of the curve

y* + xtf + ax'y — hx* =
near the origin.

Assume ax'y— bx* =
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as an approximation near the origin. Hence

ay = bx,

therefore y varies as x,

the terms retained vary as x", ani those rejected vary as x*,

and we have therefore an approximation to the curve at the

origin. If we examine all the six cases which present them-
selves by retaining two of the terms of the given equation and
rejecting the other two, we shall find that the only other

allowable supposition is, that xy" and bx' can be rejected, and
we obtain for an approximation

y* + ax"y = 0,

or y
s = — ax2

.

It will be easy to draw the branches we have found; the

equation y* = — ax* gives us a cusp, the two branches being on
the two sides of the negative part of the axis of y.

347. If in any examples we wish only to find the direc-

tions of the tangents at the origin, we may arrive at them
immediately, as shewn in Art. 195.

Suppose y* + xy3 + aa?y — bx3 = 0,

therefore {y + x) (%
) + a % - b = 0.

\X/ x

Hence, when x and y vanish, we have

the limit of ^ = -.
x a

Besides this, the limit of - may have an infinite value, and

this can be determined by examining if - has zero for a limit

The given equation may be put in the form

* +aB+ ©
,

{°-*iJ"
a
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Hence one of the limiting values of - is zero.

y

In like manner, if y* + ay'x — x4 = 0,

•we have y (- ) + a (% ) - x = 0.

Hence - has zero for one of its limiting values. Also from

the given equation we may deduce

x fx\"
11+ a x[-) =0.

y \yJ

X ft

Hence - has zero for one of its limiting values. Thus -

y x
may be zero or infinity when x and y are indefinitely dimi-

nished, and therefore the axes of x and y are tangents to the

branches through the origin.

In connexion with the subject of tracing curves from equa-

tions of the form
<f>

(x, y) = the student may with advan-
tage consult Chapter xxin. of the treatise on the Theory of
Equations.

348. We shall now give some examples of polar curves.

. 6
a , sin -

Suppose r = a sec -
, therefore -^=-——j

,

cos
2 -
O

tan£ = r-3- = 3cot-. (Art. 279.)

The polar subtangent = r
8
-y- = 3a cosec - .

CLT o

6 IT
When 5 = — , r is infinite, and the polar subtangent = 3a

;

. Btt
hence we' have an asymptote. As 6 increases from to — .

-rn is positive, and r is positive and increases with 6. As 6
do



TRACING OF POLAR CURVES. 379

increases from — to Sir, r is negative, and -™ is positive so

that r numerically diminishes.

To draw the asymptote we proceed thus: since, when

3ir
6 = -jr j r is infinite, and the polar subtangent is 3a, the eye

must be supposed at looking along OF, and a distance
OG = 3a must be measured to the right of Oi^and at right
angles to it ; a straight line drawn through G parallel to OF
is the required asymptote.

As 6 changes from to — the branch ABCD is traced

out, cutting OA at right angles at A since tan <j> = co when

= 0. When becomes greater than — , r is negative, and

according to the usual conventions with respect to sign, must
be measured in a direction opposite to that which it would
have if it were positive. For example, if the angle AOQ
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measured in the ordinary way round from OA be 1--

the corresponding value of r is

or — or - a a/2 (V3 + 1)

;

IT1 /37T ,
ir\

<;03 :;l :,- + ~
J

Bin-jg

hence we take OP = a V2 (\/3 + 1) measuring it along QO
3tt

produced. In this way, as 6 changes from — to 3ir, we

obtain the portion ECFA of the curve.

If we suppose 6 negative, or positive and greater than
3tt, we shall only obtain repetitions of the branches already

found.

349. A very common mistake in drawing polar curves is

made with respect to the asymptotes. For example, if r is

infinite when = 0, it is assumed that the initial line is an
asymptote. This involves a double error, for in the first

place it does not follow that because r is infinite there is an
asymptote ; and secondly, if there be an asymptote it majr be

parallel to the initial line instead of coinciding with it.

For example, the polar equation to the parabola from the

vertex is

_ 4a cos
r ~ sin*0 "

Here when = 0, r is oo , but the curve has no asymptote.

In the curve
a

r=—0'
sin-

when = 0, r is infinite ; there is an asymptote, but it does

not coincide with the initial line ; it will be found to be

parallel to it and at a distance 3a from it.

350. Trace the curve

asinfl
r =~0--
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dr _ a (0 cos — sin 0)

dd ff
*

0sin0

As r is never infinite there is no asymptote ; r is positive
from = to 6 = ir, negative from = it to = 2tt, and
so on.

When = 0, tan
<f>

assumes the form - ; on examination it

will be found infinite.

The curve begins at A, crossing the initial line at right

angles, since there tan (j> is infinite : as changes from to tr

the portion ABO is traced out; as changes from it to 2?r

the portion ODEFO is traced out, and so on. The curve

forms an infinite number of loops, each smaller than the pre-

ceding and all passing through 0.

If we ascribe negative values to we obtain the dotted

part lying below the straight line OA.

351. Trace the curve

r=
ad*

1 + 0"
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In this case the curve begins at the pole and makes

an infinite number of revolutions round it ; r can never be-

come so great as a, to which value however it continually

approaches. Hence r = a is the equation to an asymptotic

circle, to which the curve continually approaches as 8 in-

creases without limit.

If we give to 6 negative values, we have a branch similar

to that obtained from positive values of 6. It is represented

in the figure by the dotted portion.

352. We shall now give the equations and the figures of

a few curves which frequently occur in problems.

The Logarithmic Curve.

The equation to this curve is

X

or, which is an equivalent form,

y= ha'.

The curve extends to infinity

both in the positive and negative
directions of the axis of a;. As a;
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is increased numerically in the negative direction, y tends
to the limit zero, so that the axis of a; is an asymptote.

353. The Catenary.

The equation to this curve is

y = -(e«+e «).

It is the curve in which a flexible string
would hang if suspended from two points,

as is shewn in works on Statics.

354. The Logarithmic Spiral.

The equation to this curve is

8

r = bee,

or r = bae.

Taking the first form we have

A.
d6

tan m = r -y- = c.^ dr

Since
<f>

is thus constant the curve is also called the
equiangular spiral.

The dotted part arises from negative values of 6.
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355. The Spiral of Archimedes.

r = a0.

HoG. The Cycloid.

The cycloid is traced out by a fixed point in the circum-
ference of a circle as the circle rolls along a straight line.

Let Ax be the straight line along which the circle rolls

;

M the fixed point in the circumference of the circle

BMG which traces out the cycloid ;

A the point in the straight line Ax with which M
was originally in contact

;

the centre of the circle :

AP= x, MP = y, MOB = <j>, OB= a.

The arc MB=a<f>, and by the nat.ire of the curve it is

equal to AB

;

therefore x= a<f> — PB = a<f>
— a sin

<f>,

y = a — acos<f>.

If we eliminate
(f>
we have

x=a cos
,-><*-y

J(2ay-y*).
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357. From the last equation we have

dx = If y \

dy \/\2a-y)'

Hence the equation to the tangent at M is

and the equation to the normal at M is

y-y=-J{*hyY*'-^
If in the last equation we put y = 0, we have

x — x = V{# (2a— y)} = a sin
<f>
= PB.

Hence MB is the direction of the normal at M, and therefore

MG is the direction of the tangent at M.

If in the equations of Art. 356 we put $ = tr, we have y = 2a

and x = air as the co-ordinates of the vertex E. Hence

PB = air — a^> + a sin
<f>

= a(0+sin0), if0 = 7r-0.

Also the distance of Jffrom a straight line through E parallel

to Ax is 2a — a (I — cos
<f>)

or a (1 — cos 6).

358. If we take the vertex as the origin, and the tangent

at that point as the axis of y, we have hy the last Article

y = PN= a (0 + sin 0)\

x = AN= a (1- cos ff))
W '

Describe a semicircle on AD as diameter : let PN meet
this circle at M, and join M with the centre ; then

^JV=a(l-cos^01f);

therefore AOM= 6.

T. D. c. cc
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Since the arc AM= aO, it follows that

MP= arc AM.
From (1) we have

^.x a — x
a

y = a cos

therefore

+ V(2ax-ar!

).

dy _ //2a— x\

a£ ~ V \~x~)
'

•(2),

If s denote the arc AP, we have

£VHi)W(f).
therefore s= *J(8ax),

as will appear from the Integral Calculus.

The normal to the curve at P is parallel to MD, as we
may see from Art. 357 or from an independent investigation.

By the property of the circle it follows that
a

MD = 2a cos - .

If we investigate the value of the radius of curvature at P
we shall find it to be twice MD, that is,

a
4a cos - , or 2 V(4a* — 2ax).

359. The evolute of the cycloid is an equal cycloid.

o «

JUX^
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The arc NO = axe MN and therefore = AN,

therefore the arc C= NI= GB.

Hence is a point in a cycloid generated by rolling a circle

of radius a along BO. Hence the evolute of the cycloid

AEA' is composed of the two semi-cycloids AB and A'B.

360. The epicycloid is the curve traced out by a point in

the perimeter of a circle which rolls on the outside of a fixed

circle.

Let and G be the centres of the fixed and the rolling

circles respectively, B the point of contact, P the tracing

point, A its initial position. Take OA as the axis of x
;

draw CN, PM, perpendicular to the axis of x. Let

OB= a, BC=b, A0B=6, BCP=<f>.

Then x=ON+NM
= (a + b) cos0 + 5sin (<j>-$tt + 8)

= (a + b) cos 8 — b cos (<£ + 6).

But the arc AB = the arc BP, by the mode of generation,

that is, a6 = b<f>, therefore

x = (a + b) cos 8 — b cos —r— 8.

Similarly y= (a + b) sin 8— b sin —j— 6.

The hypocycloid is the curve traced out by a point in the

perimeter of a circle which rolls on the inside of a fixed circle.

CC2
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It may be found by a method similar to the above that for

the hypocycloid

x = (a — b) cos 6 + b cos —y— 0,

y=(a — b)smd—b sin—T— 6.

361. The radius of the rolling circle may be greater or

less than the radius of the fixed circle both in the epicy-

cloid and in the hypocycloid ; it is however easy to infer

from the figure, that a hypocycloid in which the radius of the
rolling circle is greater than the radius of the fixed circle may
be counted as an epicycloid. This can also be shewn from
the equations. For in the equations to the hypocycloid put

—-r— =
<f>;

then those equations may be written

x = (a + 6 — a) cos
<f>
— (b — a) cos —y <f>,

y = (a + b — a) sin <£ — (b — a) sin—j-
<f>

•

these are the equations to an epicycloid in which the radius

of the fixed circle is a, and the radius of the rolling circle

is b — a.

Similarly we may shew that a hypocycloid in which the

radius of the rolling circle is greater than half the radius of

the fixed circle may be counted as a hypocycloid in which the

radius of the rolling circle is less than half the radius of the

fixed circle. Thus we can obtain all epicycloids and hypo-
cycloids if in addition to epicycloids we take hypocycloids in

which the radius of the rolling circle is less than half the

radius of the fixed circle.

362. If a and b are in the proportion of two whole num-
bers we may eliminate 8 between the two equations which

determine an epicycloid or a hypocycloid, and thus obtain the

equation to the curve in an algebraical form. For example,

suppose in the hypocycloid that a = 45 ; then
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x = 3b cos + b cos 30= 4& cos* 0,

y = 36 sin 8 - b sin 30 = \b sin
s
8

;

therefore x% + y* = a$.

If in the hypocycloid we suppose a=2b, we obtain

x = 2b cos and y = ;

thus ^ is always zero and x may have any value between — a
and + a ; therefore the curve reduces to a diameter of the fixed

circle.

363. If in Art. 360 the describing point, instead of being
on the perimeter of the rolling circle, is on a fixed radius
of that circle, but either within or without the perimeter, the
curve generated is called the epitrochoid when the rolling
circle moves on the outside of the fixed circle, and the hypo-
trochoid when the rolling circle moves on the inside of the
fixed circle. In the former case we have

x = (a + b) cos — mb cos -^— 0,
o

y = (a + b) sin — nib sin—r— 0,
o

and in the latter case

x = (a— b) cos + mb cos 0,
b

y — (a — b) sin — mb sin—j— 8,

mb being the distance of the describing point from the centre

of the rolling circle.

364. If a circle roll along a straight line the curve traced

out by a point in the perimeter of the rolling circle is, as we
have already stated, called the cycloid. If the describing

point be inside the perimeter the curve is called the prolate

cycloid, if outside the curtate cycloid ; the term trochoid is also

used to denote both the prolate cycloid and the curtate cycloid.
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The equations

x = a (1 — m cos 0),

y = a (8+m sin 6),

will represent a prolate cycloid, a common cycloid, or a

curtate cycloid, according as m is less than unity, equal to

unity, or greater than unity. See Art. 358.

EXAMPLES.

Trace the following curves :

1. tf
= aa?-x\ 2. y

s =a, -x\

3. y*{x-a) = (x + a)a*. 4. scy = a2
(x

2 -/).

5. y*(x-4:a)=ax(x-3a). 6. (x
2 + y

!

)

3 = laWtf.

7. y
2
(2a — x)= x*. (The cissoid.)

8. x*f={a?-y*){b + yy (The conchoid.) Transfer the
origin to the point (0, — b) and then change to polar
co-ordinates and we have for the equation

r =b cosec 6 ± a.

9. (x
2 +ff = ai

(x
t -yi

). (The lemniscata.)

10. r = a#sin0. 11. r = a(6 + smd).

12. r sin = a cos* 6. 13. r = logsin#.

14. r* cos 6 = a2
sin

s
3d. 15. r2

cos 6 = a2
sin" 6.

16. r(0-sin0) = a(0+sin0).

17. r = a (1 — cos 6). (The cardioide.)

18. rd = a. (The hyperbolic spiral)

19. Find the equations to the tangent and normal at the

point P in the epicycloid. See the Figure to Art. 360.

Shew that the normal at P passes through B.

20. Trace the curve determined by the equations

x = a (1 — cos
<f>), y = a<f> ;

this curve is called the companion to the cycloid.
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21. Obtain in an algebraical form the equation to the epi-

cycloid for which a= 2Z>.

Result. 4 {a? +f- os
)

s = 27ay

.

22. Shew that when a = b the epicycloid becomes the car-

dioide.

a
23. Trace the curve whose equation is r = acos-; and

shew that if A be the point where the curve meets the
prime radius produced backwards and PSQR any
chord drawn through the pole S meeting the curve
at P, Q, and R, the angles PAQ and QAR are each
60°, and the angle ASQ equal to thrice the angle

APS.

24. Shew that the equations

r — a— a tan 6 and 2a = r — r tan

represent the same curve in different positions, and
that the radii vectores to the points of intersection

bisect the angles between the tangents at those points.

25. Trace the curve - = sin - log I m sin - ) , (1) when m is

greater than unity, (2) when m is equal to unity,

(3) when m is less than unity and greater than the

reciprocal of the base of the Napierian logarithms,

(4) when in is less than the reciprocal of the base of

the Napierian logarithms.
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CHAPTER XXVII.

ON DIFFERENTIALS.

365. In the preceding pages we have given the proposi-

tions commonly found in works on the Differential Calculus,

and have used the method of limits in all the demonstrations.

We now offer a few remarks on another method of treating

the subject.

In the expansion of f(x + h) by Taylor's Theorem, the

coefficient of h was shewn to be that function of x which we
had called the differential coefficient off(x) with respect to x.

Lagrange proposed to define the differential coefficient of f(x)
with respect to x as the coefficient of h in the expansion of
f(x + h), and thus to avoid all reference to the theory of

limits. Lagrange's views were propounded towards the close

of the last century and were generally adopted by elementary

writers.

One objection to this method is its use of infinite series

without ascertaining that those series are convergent, and the

proof that f(x + h) can always be expanded in a series of

ascending powers of h, which is made the foundation of the

Differential Calculus, labours under serious defects. Another
objection is that it is impossible to avoid introducing the

notion of a limit in the applications of the subject to geometry
and mechanics ; the definition of the tangent line to a curve

may be given as an example.

366. Nearly all the recent treatises on the Differential

Calculus have followed the method of limits, and the only

point of importance in which a difference exists among them
is with respect to the use of differentials. In the present

work j- has been defined as one symbol, thus : if y = <t> (x)
ax
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the limit of 7

—

YLd when ^ fa indefinitely diminished

is denoted by -f . Some writers add the following words : the

quantities dx and dy are called the differentials ofx and y
respectively ; their absolute values are indeterminate, and they
may be either finite or indefinitely small provided their relative

magnitudes be such that -£ is equal to the limit above men-

tioned.

With this meaning attached to dy and dx such equations
may occur as

dy =
(f>'

(x) dx,

where
<f>'

(x) is the differential coefficient of $ (x) or y.

Equations expressed by means of differentials are in

general capable of immediate translation into the language
of differential coefficients. For example, if x and y be co-

ordinates of a point on a curve and be functions of a third

variable t, and if s denote the corresponding arc of the curve
beginning at some fixed point, we have, by Art. 307,

tdx\* fdy\* _ fdsV
\dt)

"*"

[dtj \dt)
'

and by differentiation

dx d?x dy d*y _ds d?s

did? + dtd7~Jtd?'

A writer who uses differentials will express these results thus,

dxt + dy*= <&
a
,

dxiFx + dyd?y = dsd?s.

The student may look upon the latter as merely abbreviated

methods of writing the previous equations, and may take

dx, dy, d'x, ... as standing for -r , -4- , -^ , ... respectively.

367. Let u be a function of any number of variables,

for example three, so that u = <f>(sc, y, z). If we suppose
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x, y, z, all functions of a variable t, and for shortness put

du _ dx _ dy r. dz _

dt ' dt dt " d«

we have

MS)* + (*)* + (2)* <»•

In works on the Differential Calculus, which use differentials,

we find an equation similar to the above occurring at an
early period, namely,

*-@)*+(2M2)* (2>-

The introduction and use of this equation form the principal

difference between such works and one which, like the pre-

sent, uses only differential coefficients. To establish (2) the

following method is adopted.

Let u=<j>{x, y, z),

and m + Au =
<f>

(x + Ax, y + Ay, z + Az),

therefore

Am = 4> i
x + Aa;, y + Ay, z + Az) —

<f>
(x, y, z)

_ij>(x + Ax, y + Ay, z + Az) —<f>{x, y 4- Ay, z + Az) .

Ax

<f>(x,y + Ay, z+Az)-<f>(x,y, z + Az)

Ay y

|

4>(x, y,z+Az)-<j> {x, y, z) A _ ^
If Aaj, Ay, and Az diminish without limit, the quantity

<f>{x + Ax, y + Ay, z + Az) -<f>{x, y + Ay, z + Az)

Ax

approaches the limit (-j-
j

. If then we put for this quantity

( -r
1
-

j
+ a, we know that a diminishes without limit when
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Ax, Ay, and Az do so. In this manner we may deduce from

(3) the equation

•where a, /8, 7, all diminish without limit when Ax, Ay, As
do so. If then du, dx, dy, and dz, denote quantities whose
absolute magnitudes are undetermined, but whose relative

magnitudes are those to which Am, Ax, Ay, and Az, respec-

tively approach as their limits when they are all indefinitely

diminished, we have

Having thus established (2), we give an example of its

application. Since in establishing (2) we had no occasion to

consider whether x, y, and z, were independent or not, the

result is universally true, whatever relation be given or sup-

posed between the variables. If, for example, </> (x, y, z) is

always = 0, we have

(2)
fc+©* +@)*- <•>•

Now if
<f>

(x, y, z) = is the only equation connecting x, y,

and z, we may if we please vary x and z without changing y.

Hence in the preceding investigation Ay=0 throughout, and

therefore in (5) dy — ; thus we have

©*+$)*- (6»-

©'
where ~ is the differential coefficient of z, supposing x to

dx
vary and y to be constant. See Art. 188.

368. It would occupy too much space if we were to pro-

ceed further with the subject of differentials. Differential

Hence -j-
dx



396 ON DIFFERENTIALS.

coefficients have been used exclusively in the present work,
from the conviction that the subject is thus presented in the
clearest form, and that if some of the operations are thus

rendered a little longer than they would otherwise be, there

is at the same time far less liability to error. The equation

(2) is certainly of great use in applications of the Differential

Calculus, particularly in the higher parts of the Geometry of

Three Dimensions : after the remarks already made, the

student will probably find little difficulty in those applica-

tions. Perhaps he may be further assisted by referring to the

theorem for the expansion of a function of three variables.

If u = <]> (x, y, z), we have

<f>
(x + h, y + k, z + 1) — <j> (x, y, z) or Aw

, du , du ,du _= h-r + k-T- + l-r + R,
dx dy dz

where R involves squares and products of h, k, I. Hence the

smaller h, k, I, are taken, the smaller is the error contained

in the assertion

, du ., du ,du
Aw = A-=- + «r+ ' -t~-dx dy dz

MISCELLANEOUS EXAMPLES.

1. Find -j- if u = sm'1
»
l/x — \/{x — x1

),

and v = cos
-1

(a;* a*) — (x* a* — «J a^) *.

Result. —
2a* Vl — xJ\ — x$ a*

2. Find the maxima and minima values of (sin x)**1*.

3. Find the area of the greatest isosceles triangle that can

be inscribed in a given ellipse, the triangle having its

vertex coincident with one extremity of the major axis.

4. APQB is a semicircle whose diameter is AB, and PQ is

parallel to AB. Draw AQ and BP, and let them meet

at R : find the position of P and Q so that the triangle

PQR may be a maximum.

~ , PQ .x. ix V17-1
Result, -rk must be equal to .AB 4
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5. A figure made up of a rectangle and an isosceles triangle

is inscribed in a semicircle : determine its dimensions

so that its area may be a maximum.

Result. The height of the rectangle must be half the

radius of the circle.

6. Find the cone of least surface, excluding the base, that

can surround a given sphere.

Result. The sine of the semivertical angle = %/2— 1.

7. Find the cone of least surface, including the base, that

can surround a given sphere.

Result. The sine of the semivertical angle = \.

8. Find the maximum value of cos 6 cos $ cos ty, where
8 +

<f>
+ yfr = it.

9. Transform t-j + -tj by assuming

x = IjX + m$, y = l
t
x+ m^y.

r, j. „ i in d*u „ ,, , , d2u .,„ ,. d}u
Result. (^ +<)^ + 2 (Z,Z

2
+ nynj ^^, + (l*+ <) ^.

10. An equation between three variables contains n arbi-

trary functions of one of them, and 4na— n — 1 arbitrary

constants : shew that generally the equation must be

differentiated at least in — 2 times in order that the

functions and constants may be eliminated.

11. If V be any function of x, y, z, and V the value of V
when vw is substituted for x, wu for y, and wo for z

;

then

,tPV ,d*V
t
#V d>V d*V d'V

w..
dT

v
,<rv

wt
d?v

du' dv* dw'

12. If y = e" + e"", and z + xe
-*" = 0, shew that the general

term in the value of y when expanded in a series is

^{(2»+ir-(2n-ir}.
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13. If y = x + ai/r (y) + @<f> (y) + , then

F(y)=F(x)+...+± 1̂ [ F' (x){^(x)+^(x) + . ..}']+ ...

14. If y = z + 8(f>(y), and y' = z + x'yfr(y'), z and z' being

independent variables, shew that the general term in

the expansion of f(y, y) in powers and products of x
and x is

dz^dz™ \*
(z)l * (/)

I &&'
j i^-[«

•

Find the coefficient of a?x in the expansion of

cos (ay + o-'y), when y=z+x siny, and y'=z'+x' sin y'.

15. In any curve the part of the tangent between the point

of contact and the perpendicular from the origin on the

, . . rdr
tangent is equal to -r—

.

16. Shew that the equation to the normal at any point of a

curve may be put under the form

x — x _ y — v

drx dfy

1? 5?
Shew that this equation is the analytical expression

of the fact, that if a tangent be drawn to a curve at

any point P, and in the tangent PT be taken equal to

the arc PQ and on the same side of P, then the straight

line QT is ultimately perpendicular to the tangent.

17. In the ellipse the focal distance cuts the curve at an
angle, the tangent of which is a mean proportional be-

tween the tangents of the angles at which the corre-

sponding diameter and a parallel through the point to

the transverse axis cut the curve.

18. If a curve be referred to axes inclined at an angle a to

each other, shew that the radius of curvature is

- Bma
da?
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19. The equation to a parabola referred to any two tangents

being/-) +(r) =1, shew that the radius of cur-

vature is —7—

-

fax — 2 cos a Jlabxy) + by}%, where a

is the inclination of the tangents ; and thence find the

co-ordinates of the vertex assuming that the curvature

is a maximum at that point.

20. If a curve pass through the origin and touch the axis

of y, the diameter of the circle of curvature is equal

to the limit of *- • if it touch the axis of x the diameter
x

a?
is equal to the limit of—

.

y
21. If a curve pass through the origin at an inclination o to

the axis of x, shew that the diameter of curvature at

i? -+ v^
the origin is the limit of —=-^

. Hence, shew
aisina—ycosa

that the radius of curvature at the origin of the curve

y* + lay — 2ax = is 2 \/2a.

22. If <}> be the angle between the tangent and the radius

vector of a polar curve, shew that the radius of cur-

. r cosec <f>

vature is .

,

.

+
de

23. The equations to an epicycloid being

x = a (2 cos 6 — cos 20),

y = a (2 sin 8 — sin 20),

shew that p = — sin - , and that the evolute is an epi-

cycloid in which the radius of each circle is - .

24. In the curve y = x* — ix3 — 18x2
, find the nature of the

curve at the points x = 3, — 1, and f (1 ± *J5).

25. Shew that the curve y = e~
x" has points of inflexion when

— + 45-
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26. In any curve the equation — + 1 = holds at a point

of inflexion, 6 and <j> being the angles which the prime
radius and tangent make respectively with the radius

vector.

dr
27. Is T^ necessarily of the form - at a multiple point ?

28. Find the singular points in the curves

*(« + /) = 1 + Sy*

and y* - 2xy + 2x2 - x3 = 0.

29. Find the nature of the curve

y + 1 = 2x - x* ± (2 - x)'

at the point x = 2.

30. Determine the point of inflexion in the curve

y = x3 - %a? + 24x - 16.

31. From the pole of the curve r = Aa perpendiculars are

drawn upon the tangent; through the points of inter-

section of the perpendiculars with the tangents, straight

lines are drawn parallel to the radii vectores : shew
that the equation to the locus of the ultimate intersec-

tions of all such straight lines is r =A cos a a**", where
cot a = log a.

32. If radii vectores of an equiangular spiral be diameters of

a series of circles, the locus ofthe ultimate intersections

of the circles will be a similar spiral.
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CHAPTER XXVIII.

MISCELLANEOUS PROPOSITIONS.

369. In the present Chapter we shall investigate various

propositions which afford valuable illustrations of the prin-

ciples of the subject and lead to important results.

370. The following formula is due to Jacobi

:

d"-
1

(1 - gTJ _ , .^ 1.3.5... (2w-l) sin wg

dx"-'
~

{
' n

where x = cos 0. This we shall now demonstrate.

n-1

Put y for 1 — x2
: we have

dy**_ d~* d +i _ a ,

dx» ~dx"-'dx y ~ ("
n + 1

>dx»-
lXy

'

thus by Art. 80

%-—(»» + i)»^-(»-iK*. +i)yr -()•

thus by Art. 80

From (1) and (2) by eliminating , „-, we obtain

T. D. C. D D
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Assume that Jacobi's formula is true for a specific value

of n ; differentiate both sides with respect to x : thus

dY~ k _ , ,» 1.3.5...(2M-l)cosrcfl

dxn ~\ ' sin 9

Using this result, and also Jacobi's formula, on the right-

hand side of (3), we obtain

dnv"*b
(n+1)—pr = (-l)"1.3.5... (2n + 1) cosnd sin 9

+ (-l)"1.3.5... (2» + 1) sin n9 cos 9

= (-l)"1.3.5... (2n + 1) sin (n + 1) 6
;

therefore *£ - (- 1)"
1-8.5...

(
8» + l),in(, + l)g

>

dx" K
' ra + 1

This shews that if Jacobi's formula is true for a specific

value of n it is true for that value increased by unity ; and
it is obviously true when n = \, and when n = 2 : therefore it

is true for any positive integral value of n.

371. The following proposition is useful in some appli-

cations of mathematics to natural philosophy : Having given

that if x varies, it must be such a function of the independent
dx

variable t, that -=- = ax, where a is some quantity, not neces-

sarily constant, which is always finite ; and having given

that x is zero when t is zero : then it will follow that x
cannot vary, or, in other words, that x is always zero.

Denote x by
(f>

(t). We know by Art. 101 that

4>(t)-<t>(O) = t<t>'(0t),

where 9 is some proper fraction.

In the present case
<f> (0) = 0, and <(>' (&t) = a<f> (9t), where a

is some finite quantity. Thus we have

<f>
(t) = ta$ (0t),

and therefore, if
<f>

(t) be not zero,

_ ta<f> (9t)
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But it is impossible that this result can be universally

true. For since a is always finite we can take t so small
that ta shall be as small as we please. And as

<f>
(t) begins

with the value zero, if it varies it must at first increase

numerically with t ; and therefore Jjrr- cannot be greater

than unity. Hence the result is inadmissible ; and it follows

that x cannot vary, or in other words, x is always zero.

372. The preceding proposition may be extended so as

to involve any number of such supposed variables as x ; we
will take three for example : Having given that if x, y, and z
vary, they must be such functions of the independent vari-

able t, that

dx dy . , 7 dz

jt

= aix + a
ay + a

z
z, -^

t

=b
t
x + b

2y + b
s
z, -g = c

x
x + c

%y + c
3
z,

where a,, a
2 , as , b

x
, ...cs

are quantities, not necessarily con-
stant, which are always finite ; and having given that x, y,
and z are all zero when t is zero : then it will follow that x, y,

and z cannot vary, or, in other words, that x, y, and z are
always zero.

Denote x by <f>(t), y by ifr(t), and z by x(t). Then, as in

the preceding Article, we have

<f>(t) = t [aj, (8t) + a
2V (ft) + a^c (to)}

:

and therefore if
<f>

(t) be not zero we have

t

\

a
^(t)

+a
'<f>(t)

+a
°<Mot'

and in like manner we deduce two other similar results.

But it is impossible that these results can be universally

true. For suppose t indefinitely small, and let if> (t) be not less

than either yjr (t) or % (t). Then the first of the three results

asserts that unity is equal to an indefinitely small quantity.

Hence the results are inadmissible ; and it follows that x, y,

and z cannot vary, or, in other words, that x, y, and z are

always zero.

DD2
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373. We have already given two forms for the remainder

after n+1 terms of an expansion by Taylor's Theorem ; see

Arts. 93 and 110: these two forms, and others, may be
deduced from one general expression which we will now
investigate.

Let <}> (x) and yfr (x) be two functions of x which remain
continuous, as also their differential coefficients between the

values a and a + h of the variable x ; suppose also that be-

tween these values the differential coefficient ^'(x) does not

vanish : then by Art. 98

<t>(a+h)-tf>(a) _ (f>'(a 4- 6h) ..

^r(a + h)-f (a)~T}r'(a + 0h)
[ >'

where 8 is some proper fraction.

Denote by <}> (x) the function

F{a + h) - F(x) - (a+ h-x) F'{x) - ...- ^^l
1 ' X^F n

(x)

;

and denote by ifr (x) the function

f(a + h) -/(*) - (a + h - x)f\x) - ... -
{a +^ xY

f'(x).

We assume that F(x) and all its differential coefficients

up to F n+l
(x) inclusive are continuous while x lies between

the values a and a + h ; as also f (x) and all its differential

coefficients up to /*** (x) inclusive : moreover we assume that

f^
1
(x) does not vanish between these values.

Now # (x) = - (« + *-»)'Fn+1
(x),

and V(x) = -
ia+

^
X)*rl

(x);

also t}> (a + h) = 0, and ifr (a + h) = :

thus we have from (1)

K«)_L2 a fflV~ *"*"(« + ** )
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Multiply by -^(a), and put for </>(a) and i/r(a) their values
;

then

F(a+ h) -F(a) - hF\a) - ... -
f±llM = R>

where R =

{/(-+*)-/(«)-V(«)-...-^JE
^—; -j*^)H-6h)-^a+ek)

.(2).

This is a general expression for E, the remainder after n + 1

terms of the expansion of F(a + h) by Taylor's Theorem.

For a particular case take f(x) = (cc — a)**1

, where p is any
positive number which is not less than q ; then all the con-
ditions with respect to f{x) are satisfied: and we have

/(a)=0, /» = 0, ...f'(a)=0,

f(a + h)=ir\

and j**1
(a + 0k) = (p+ 1) p ... {p - q + 1) (eh)™.

Hence

Lg (l-fl)— h"
+1 Fn+1

(a + hd)

[v &*-< (p+l)p...(p-j+l) W *

In the particular case in which p = q we have from (3)

p _ (i _fl)-rA-«j,'»« ( + g;t
)*

(p+l)Ln
(4} "

If in (4) we put p = n we have Lagrange's form of the

remainder, which is given in Art. 92 ; if in (4) we put p =
we have Cauchy's form of the remainder, which is given

in Art. 110.

Other particular forms may be readily obtained. Thus in

(3) put q = ; then since |_0 must be replaced by unity we
have

„_ (\-0) n
h"

+iFn+1
{a + 0h)

8*(p+l)[n
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Again, in the general expression (2) letf (w) = F" (x), and
q = ; then

y!r(x)=F"(a + h)-F»(a:),

and assuming that F"+1
(x) does not vanish between the

values a and a + h, we have

In (2) put q = 0; thus

R =^^ \
f{a + h) -f{a)

\ f(a + 6h) •

Mimoires de I'AcadSmie... de Montpellier, Vol. 5, 1861... 1863.

374. Expand V(l — 3?) • sin
_1x in powers of x.

Assume V(l — a2

) shT'x = A„ + A
t
x + Aj? +A

s
x3 + ...

Differentiate both sides with respect to x ; thus

ar sin
-1* . „ . . _.

that is 1 - „ {A u + A x
x + Ajf + ...)

= A
t + 2A

2
x+ ... + rAX~ l + ;

therefore 1 - x* - x (A + A^x + Aj? + ...)

= (A
l + 2A

i
x+... + rArx

r~1 + ---) (1 -x1

).

Equate the coefficients of xT
; thus if r be greater than 2

we have
-^-(r + lJ^-Cr-l)^,

therefore (r - 2) Ar_x
= (r + 1 )4+I

.

Also we can see by expanding >J(l — x2
) and sin

-1
a; and

forming their product that

4,= 0,^ = 1, 4 = 0, 4 =
-J;



MISCELLANEOUS PROPOSITIONS. 407

hence A
t

, Aa , A t , ... vanish,

and A
>
=
\
A

>
= -h>

. _4 2.4

Put for sin
-1

a; ; thus we deduce

-^ = 1 -| (sin ^_^_ (sin ^__^i_ (sin ,-
/ _...

See Quarterly Journal of Mathematics, Vol. 6, page 23.

375. Let tf> (x) denote x" +p^"'1 + p2
x"'

2 + ...+ p„_x
x+ p„

,

where n is a positive integer. It is required to determine
the coefficients p t , p2

, ...pn so that the numerically greatest

value of
<f>

(x) between the given limits — h and h for x shall

be as small as possible.

If we give a geometrical form to the problem, we may say
that the curve y = $(x) between the limits — h and h is to
deviate as little as possible from the axis of x.

The maxima and minima values of </> (x) will be deter-

mined by the equation <j> (x) = 0, which is of the (n — l) " de-
gree ; and therefore there cannot be more than n — 1 of such
values. These values, together with the values of $ (x) when
x = — h, and when x = h, will be called extreme values.

376. Now we admit as sufficiently obvious that there

must be some definite values of the coefficients in
<f>

(x) which
solve the problem ; and we shall first shew that there must
be n + 1 extreme values all numerically equal.

Suppose, for instance, that n = 3 ; then there must be 4

extreme values all numerically equal.

For if possible suppose that there are only 3 extreme values

of
<f>

(x) ail numerically equal ; namely, corresponding to the

values x,, x
2 , and x

a
of x. Let yfr (x) denote the expression

^{x ~ x
z) (

x ~ x
s) + /"* i

x - x
>) i

x - x
s) +fJ

-zi
x ' xi) (

x - *
s).
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and suppose /*,, /t,, and fiB
to be infinitesimal constants,

which are determined so that <p (x) and yfr (x) may have con-

trary signs when x = x
x , when x = x

2 , and when x = x
a

: this

can obviously be done. For instance, the sign of /i, must be
4>(x)

contrary to the sign of -,
''

- . Then <f>(x)+y]r(x)
Vci

~ x
t) Kx i

~ x
a)

differs only infinitesimally from </> (x) ; but when
<f>

(x) has its

extreme values
<f>

(x) +ijr (x) is numerically less than
<f>

(x)

:

and so <f>(x) +-<fr (as) deviates less from zero than <p (x) does.

Moreover the coefficient of xs
in

<f>
(<c) +$ (x) is unity ; so

that
<f>

(x) + yjr (x) is an expression of the proper form. It

follows therefore that <j> (x) cannot be such as the problem
requires.

The preceding argument will perhaps be more readily

understood when presented in a geometrical form. The curve

y = <f>
(x) + t}t (x) is indefinitely close to the curve y = tf> (x) ;

but where the latter curve deviates most from the axis

of x the former curve is nearer to the axis of x: and thus

the former curve deviates less from the axis of x than the

latter curve.

In the same way we may treat the case in which tf> (x)

has only 2 extreme values numerically equal and numerically

greater than any other value ; or the case in which the
numerically greatest value of (/> (x) is unique.

The considerations which we have thus employed when
n = 3 are applicable whatever may be the value of n.

Hence, as we have said, to solve the problem the coeffi-

cients in <j> (x) must be determined so that <j> (x) may have
n + 1 extreme values all numerically equal.

377. Let k denote the extreme numerical value of
<f>

(x)
;

then we have shewn that the equation

{4>(x)Y-v=o (l)

must have n+ 1 values which also satisfy the equation

(x
,-A!

)f(x) = (2).
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Let the n+ 1 values be denoted by xv x
2
,... xH_l

, besides
— h and h. We shall shew that any one of the former n — 1

roots of (1) occurs twice in (1). For the derived equation
of (1) is

2f(x)<K*)=0 (3);

and any one of the values #,,#,,... av., is by supposition a
root of the equation <t>(x) =0, and so satisfies (3).

Hence we have by the Theory of Equations

{«/> (*)}»- k*= (*'- V) (x - *,)* (x - x,)\ ..(x- x^y.

But by supposition the roots of the equation
(f>'

(x) = are

xv x
%
,... xn_1

; hence

<j)'(x) = n{x-x
l
)(x-x

2
)... {x-x^);

therefore {$ (a)}'- ff= WML (f-^) (4)>

Differentiate (4) with respect to x ; thus we get

nty {x) = xtf {x) + (x* - h*)
<f>"

(x) (5).

From (5) by equating the coefficients of a;", x"'
1
, x"~*,... we

shall be able to determine in succession pi , p, p,,... For
thus we have

n2 = n + n (n — 1),

n*Pi = (w — 1) p, + (« — 1) (« — 2) plt

rfp
2
= (n - 2) p2 + (n - 2) (n - 3) p2

- n (n - 1) h\

«2

P,= (« - 3) p, + (n - 3) (n - 4) p3
-

(B - 1) (w - 2) A*p 1(

wJ

p4
= (w - 4) p4 + (w - 4) (n - 5) pt

- (n - 2) (n - 3) kyit

and so on.

in, a nA* « ("-3)^0.Thus ^=0, p2
= -, p,= 0, p4

= - v ^—t3.—

Therefore
tf>

(x) = *" - naT*J + "^J—
*"

£

- "»-;),(- ') ^g + (6).
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378. If in the identity at the top of page 120 we put

U = —i we shall obtain
x

,2 12M»{x + V(*
!- A

2
)]" + [x - V(^ - A

s

)j

j.-^**
,
«(»-3) .-4 A

4

hence we infer that

(a) _ {* +vV - **)}'

+

{* -vV - A2
)}"

(7)>

and this may be verified by shewing that this value of <p (x)

satisfies equation (5).

By putting x = h we find that k = —

j

.

Assume T = cos 6, which is of course allowable so long as
a °

x is not numerically greater than h.

Then {x ± V(^
! - A"))" = h" {cos 6 ± V^T sin 0)"

= A" {cos ra<? + «/ - 1 sin n#}
;

thus </> (a) =
2
n-. ;

that is so long as x lies between — A and h we have

<£ (x) = —, cos rc f cos"
1

7 j
= & cos n (cos

-1
-7

379. The last result may also be obtained from (4). For
put (p (x) = z ; then (4) gives

//?

therefore

dx

n 1 dz
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71

Hence since 7775 .. is the differential coefficient of
V(A — x)

n cos
-1
y with respect to x, and—^-p 5-. -5- is the differen-

tial coefficient of cos
-1
y with respect to x ; it follows by
fc

Art. 102 that

~i x —1 ^ . />
n cos v = cos y + C,

where C denotes some constant quantity. Hence

= cos
(
n cos '

j- — C\.

But by hypothesis z must be numerically equal to h when
x is equal to h ; and thus C must be some multiple of it

;

and therefore cos In cos
-1
y — CM is numerically equal to

cos n (cos
-1
r

)

. This gives the required result.

The problem of Arts. 375. ..379 is also solved in Bertrand's

Caicul Diff^rentiel, pages 512...519.

civ
380. We have sometimes to determine the value of -,-

ax
from an equation <£ (x, y) = 0, when x and y are such that

,

'

"
and ,

'

"
vanish ; for instance, we have to do so

<Jx ay
when we are finding the directions of the tangents at a mul-

tiple point of a curve. The method of Art. 191 is liable to

the objection which is there stated. In Art. 195 another

method is given for the case in which x = and y = are the

values under consideration. It is easy to make the latter

method applicable for any values of x and y ; by a process

which is geometrically equivalent to transferring the origin

of co-ordinates to the multiple point which may be supposed

to be under consideration.

Suppose that x = a and y = b are the values to be con-

sidered. Put a + h for x, and y + k for y. Then the equa-
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tion becomes
<f)

(a + h, b + k) = 0. Now expand
<f>

(a + h, b + le)

by Chapter Xiv. Suppose that every differential coefficient

dT'Qix, y) , , , .— 7 r j i
vanishes when x = a and y = t>, so long as r + s is

less than n. Then we may denote the expansion symbolically

thus

:

where u stands for
<f>

(x, y) and v for <j>(x +6h, y + 6k),

8 being some proper fraction ; and after the differentiations

have been performed we are to put x = a and y = 6.

Now if we suppose h and k indefinitely small we have ulti-

mately for determining the ratio of k to h an equation which
may be expressed symbolically thus

:

/. d . d\n

[h j- + k -j- w = 0,
V flfs ayJ

or more explicitly thus

:

dx" dx^dy T
1

2

^"^rfy1
+ ... = 0,

where after the differentiations have been performed we are

to put x = a and y = b.

It is obvious, as in Art. 195, that when h and k are indefi-

rC dlf
nitely small y coincides in meaning with -j- for the case in

which x = a and y = b.

381. As an example of the preceding Article suppose
we have the equation x'y* — c

2
(c — xy(c* + a;

2
) = 0. Here

when x = c and v = we have -=- = and -y- = : also then^
<£c ay

d*u . . d*u „ . d2u „ . _,, ,, .

j-j = — 4c
4
, -=—j- = 0, and -j-. = 2c . Thus we obtain

ax dxdy dy*

-A!
4c* + P2c' = 0;

k
therefore 7 = + V2.
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382. The remarks which we shall now give will illustrate an
instructive mode of considering the singular points of curves.

It will be seen that in effect we transfer the origin to the

point to be examined, and then employ polar co-ordinates.

383. Suppose that from any point of a curve as centre a
circle is described with an infinitesimal radius ; then by the
aid of diagrams the following statements become obvious

:

If the point is an ordinary point the circle cuts the curve at

two points, and the radii of the circle drawn to the two points

include an angle which differs infinitesimally from two right

angles.

If the point is a singular point we have other results which
depend on the nature of the singularity.

If the point is a conjugate point the circle does not cut the
curve.

If the point be a point cHarret the circle cuts the curve at

only one point.

If the point is a cusp the circle cuts the curve at two
points ; but the radii of the circle drawn to the two points
include an infinitesimal angle.

If the point is a point saillant the circle cuts the curve at

two points ; but the radii of the circle drawn to the two
points include an angle which is neither infinitesimal nor
infinitesimally different from two right angles.

If the point is a multiple point the circle cuts the curve

at more than two points.

384. Now suppose that
<f>

(x, y) — is the equation to the
curve in a rational form. Let x and y be the co-ordinates of

a point on the curve ; and let x + h and y + k be the co-ordi-

nates of any adjacent point.

Since <j> (x, y) = 0, we have, by Chapter xiv.,

<f>
(x + h, y + k) = Ah + Bk +

1

'

(C%* + 2Dhk + Ek*) + R ;
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here A, B, G, D, E are certain differential coefficients of

<\> [x, y) ; and R may be symbolically expressed as

1 /, d . d\ 3

\j{
h
d*

+ k
Ty)

v>

dyj

where v denotes </> (x+ th, y + tic), and / is some proper frac-

tion.

Let us suppose that A and B are not both zero ; assume

A = Ksiny, and B = K cos 7; also put r cos 8 for h and
r sin 8 for 1c. Then the equation tf)(x+ h, y + k) = becomes

2T sin (7 + 8) +
1
\c cos

2 + 2D sin 8cos8+E sin
2
£>i

+ 7 = ° W-

It is obvious that when r is infinitesimal — is also in-
r

fmitesimal ; and that the above equation is satisfied by a

value of 8 for which 7 + is infinitesimal, and by a value

of 6 for which 7 + 8 is infinitesimally different from w
;

and by no other value of 8 except such as differ from these by
a multiple of 2tt. Hence we have an ordinary point of the

curve. Therefore for a singular point it is necessary that

A = and B = 0.

Suppose then that -4 = and B = 0. The equation (1)

reduces to

^cos, 0{tan*0+^tan0 +S + ~=o (2).

385. Suppose that If is greater than CE; then we know
2D G

that tan* 8 + -=- tan 8 + -=, can be resolved into real factors
;

Jii Mj

and so may be expressed as (tan 8 — tan a) (tan 8 — tan 0)

:

and a and ft may be supposed to He between and tr. Thus
the equation becomes

2R
j£cos

2 0(tan0-tana) (tanfl-tan/S) + ~r = (3).
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R
Now —

t is infinitesimal when r is ; therefore, denoting by

t) an infinitesimal angle, we see that (3) has four different

solutions for 0, namely, one between a — rj and a + t], one
between /3 — y and (3+ r), one between ir + a— r) and -jr+ a+v,
and one between ir + fi — rj and it+ /3 + ij. Thus the singular

point is a double point, the tangents at the point being in-

clined at angles a and /3 respectively to the axis of x.

386. Next suppose that D* is less than CE ; then we
shall find that the infinitesimal circle does not cut the curve,

and so the singular point is a conjugate point.

387. Finally, suppose that D2 = CE; then equation (2)

takes the form
IR

jE cos
2

(tan 0- tan a)'+-^ = (4):

the discussion of this form is rather complex, and we will

only briefly indicate the results.

Suppose that -= is negative when is indefinitely near

to a. Then denoting by r) an infinitesimal angle we see that

(4) has two solutions for 6, namely, one between a — t] and o,

and one between a + 1) and a. The sign of -= when is

indefinitely near to ir + a will in general be contrary to the
sign when is indefinitely near to a, because R is in general

a function of the third degree in cos and sin 0, when r is

small enough ; and so there is no solution of (4) in this case

besides the two already noticed. Hence the infinitesimal

circle cuts the curve at two points, and only at two ; and the
radii of the circle drawn to the two points include an in-

finitesimal angle. Therefore the singular point is a cusp; the
tangent at the cusp is inclined to the axis of x at an angle a,

and the two branches are on opposite sides of the tangent.

Similarly if -^ is positive when 8 is indefinitely near to a

we have in general a cusp of the first kind as before; the
tangent at the cusp is now inclined to the axis of x at an
angle ir + a.
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But it may happen that E itself changes sign when 6 is

indefinitely near to a or to tt + a ; and then our conclusion

as to a cusp of the first kind does not hold. We should have
in such a case to make a closer examination, and in general it

would be necessary to extend our expansion of <f>(x+h, y+k),
and instead of R to have terms which may be expressed as

where t represents a proper fraction.

388. Moreover if C, D, and E all vanish at the point

(x, y), we should have to use this extended form of the ex-

pansion of
<f>

(x + h, y + k) in order to determine the nature

of the singularity.

MISCELLANEOUS EXAMPLES.

1. If a semicircle roll along a straight line, the curve to

which its diameter is always a tangent is a cycloid.

2. If a cycloid roll along a straight line, the equation to

the curve which its base touches is

fH-(£)'} H£)'F
3. A series of circles is described having their centres on an

equilateral hyperbola and passing through its centre,

shew that the locus of their ultimate intersections will

be a lemniscate.

4. Examine the nature of the following curves at the origin:

y* + 2ay'x+ x*- 2ax' = 0,

y-- + x4 +3a;y=0,

y* — ixy (ay — bx) —x*=0,

y + x5 = 2aVy.
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5. Trace the curve afy*+ (x' — a*) (a;
4 — J

s
) = 0, and shew

thai the breadth of each closed portion is twice as great

in the direction of y as in that of x. Shew also that

when b approaches a as its limit, each of these portions

is ultimately similar to an ellipse.

6. Trace the curve (x' - a')
a+ (f - b*)*= a\ Shew that

when b = a it reduces to two ellipses.

7. If a conic section whose focus is at the pole of a giveD
curve have with the curve a contact of the second
order at the point (u, 8) the equation to the conic sec-

tion will be

Idu ]

dd \ d*u

coS (& -e)f
= u + dW

8. A given curve rolls on a straight line, explain the
method of finding the locus of the centre of curva-

ture at the point of contact of the curve and straight

line.

If the rolling curve be an equiangular spiral the re-

quired locus will be a straight line ; if a cycloid a

circle ; and if a catenary a parabola.

9. Right-angled triangles are inscribed in a circle : if one

of the sides containing the right angle pass through

a fixed point, find the curve to which the other is

always a tangent.

Result. <?{a? + y') = (a
2 + 6

s - c' - ax - byf,

where a and b are the co-ordinates of the centre of the

given circle and c its radius, the fixed point being the

origin.

10. Determine the equation to the envelop of all the equi-

lateral hyperbolas which have a common centre and
cut .at right angles the same straight line.

Result, a? + 3 {axy)% -yi + d2 = 0,

where x = a represents the given straight line.

T. D. C. E E
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11. Find the envelop of the axis of a parabola having a

focal chord given in position and magnitude.

Result. x% + y% = c^ ; the origin being the middle
point of the given chord, and one of the axes coinciding

with that chord.

12. A system of ellipses is described such that each ellipse

touches two rectangular axes, to which its axes are

parallel, and that the rectangle under the axes of

the ellipse is constant: shew that each ellipse is

touched by two rectangular hyperbolas, the rectangle

under the transverse axes of which is equal to the

rectangle under the axes of any one of the ellipses.

13. A, B, are the centres of two equal circles, and AP, BQ,
are two radii which are always perpendicular to each
other : find the curve which is always touched by the
right line PQ, and explain the result when

AB*= I2AP*.

14. Tiace the following curves

:

xs -xy'+ay2 = 0,

y*-7yx*+6x!'-d' = 0,

y
4 + aY-aV=0,
a (a? + Tx'y + 7xy* + f) - a?y

s = 0,

xy' + ax' — a" = 0,

y
2
(x - 2a) - a? + a8 = 0,

y
5 — aa?y - hxy% + x* = 0,

y
B -5axi

y' + x6 = 0,

y = - + (x — a)— ,9 a ~ v
' a '

y° (a + x) = x2
(a - x),

V = xe*.

y = e~*-J{a?-\),



MISCELLANEOUS EXAMPLES. 419

e =sin -,
a

r'
1
sin 8 = as

cos 2 5,

15. $ and M are two fixed points, and a curve is described

such that, if P be any point in it the rectangle con-

tained by SP and HP is constant: shew that the
straight lines drawn from S at right angles to SP and
fromH at right angles to UP meet the tangent at P at

points equidistant from P.

16. If /"(-, t ) be a rational homogeneous function of - , =rJ \a bj ° a b

of n dimensions, shew that the envelop of the curves

represented by the equation/!-, j\ = 1, under the

condition ab = constant, consists in general of n rect-

angular hyperbolae having the axes as asymptotes.

17. If any quadrilateral ABCD change its form, its sides

remaining constant, shew that the variations of the

angles A, B, C, D are ultimately in the same ratio as

the areas of the triangles BCD, CDA, DAB, ABC.

18. In Art. 274, if p = n— 1, we have approximately when
x and y are very large

2-« +- where b = -ti^\ •

shew that if y = « — 2, we have by continuing the

approximation

y__ b 2% (Ag+2ty>1)+6'f fo)

Hence shew that in general the two extremities of

the rectilinear asymptote are on opposite sides of the

curve.
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19. In Art. 275, if p = n — 1, we have approximately when
x and y are very large

2-* + ^y, where A—*^:
shew that if q = n — 2, we have by continuing the
approximation

y (A\i B G
X ' \X J X x*

where B=-%^-Q^,

_ x(/0^*"fa)+ {*>,) +j^M + f *'>,)}£

20. If (a, /3) be a point of the curve <j> (x, y) = through
which pass n tangents, shew that the locus of all the
tangents at that point is expressed by

{(«-.)£ + G,-0^}"*fc0«Q.

21. Shew that the theorem of Art. 91 will hold even if
<f>'

(x)

is infinite when x= a or when x=b. Give a geo-

metrical illustration.

22. Shew that the theorem of Art. 98 will hold even if F' (x)

or /' (x) is infinite when x = a or when x = a + h.

23. Shew that the formula (3) of Art. 373 will hold provided

p + 1 is not less than q.

24. Obtain from (3) of Art. 373 the result

B = \S^
n & (1 - 6)"~i h"

+1
-F"

+1
(a + Oh)

1.3.5... (2g+l)[»
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